A causal inference approach for constructing transcriptional regulatory networks

被引:28
作者
Xing, B
van der Laan, MJ
机构
[1] Genentech Inc, San Francisco, CA 94080 USA
[2] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
关键词
D O I
10.1093/bioinformatics/bti648
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Transcriptional regulatory networks specify the interactions among regulatory genes and between regulatory genes and their target genes. Discovering transcriptional regulatory networks helps us to understand the underlying mechanism of complex cellular processes and responses. Method: This paper describes a causal inference approach for constructing transcriptional regulatory networks using gene expression data, promoter sequences and information on transcription factor (TF) binding sites. The method first identifies active TFs in each individual experiment using a feature selection approach. TFs are viewed as 'treatments' and gene expression levels as 'responses'. For every TF and gene pair, a marginal structural model is built to estimate the causal effect of the TF on the expression level of the gene. The model parameters can be estimated using the G-computation procedure or the IPTW estimator. The P-value associated with the causal parameter in each of these models is used to measure how strongly a TF regulates a gene. These results are further used to infer the overall regulatory network structures. Results: Our analysis of yeast data suggests that the method is capable of identifying significant transcriptional regulatory interactions and the corresponding regulatory networks.
引用
收藏
页码:4007 / 4013
页数:7
相关论文
共 47 条
[11]  
DECKERT J, 1995, GENETICS, V139, P1149
[12]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[13]   Systematic changes in gene expression patterns following adaptive evolution in yeast [J].
Ferea, TL ;
Botstein, D ;
Brown, PO ;
Rosenzweig, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9721-9726
[14]   Using Bayesian networks to analyze expression data [J].
Friedman, N ;
Linial, M ;
Nachman, I ;
Pe'er, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :601-620
[15]   Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p [J].
Gasch, AP ;
Huang, MX ;
Metzner, S ;
Botstein, D ;
Elledge, SJ ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (10) :2987-3003
[16]   Genomic expression programs in the response of yeast cells to environmental changes [J].
Gasch, AP ;
Spellman, PT ;
Kao, CM ;
Carmel-Harel, O ;
Eisen, MB ;
Storz, G ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4241-4257
[17]   Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays [J].
Gross, C ;
Kelleher, M ;
Iyer, VR ;
Brown, PO ;
Winge, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (41) :32310-32316
[18]   The yeast proteome database (YPD): a model for the organization and presentation of genome-wide functional data [J].
Hodges, PE ;
McKee, AHZ ;
Davis, BP ;
Payne, WE ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :69-73
[19]   Functional discovery via a compendium of expression profiles [J].
Hughes, TR ;
Marton, MJ ;
Jones, AR ;
Roberts, CJ ;
Stoughton, R ;
Armour, CD ;
Bennett, HA ;
Coffey, E ;
Dai, HY ;
He, YDD ;
Kidd, MJ ;
King, AM ;
Meyer, MR ;
Slade, D ;
Lum, PY ;
Stepaniants, SB ;
Shoemaker, DD ;
Gachotte, D ;
Chakraburtty, K ;
Simon, J ;
Bard, M ;
Friend, SH .
CELL, 2000, 102 (01) :109-126
[20]   Identification of regulatory elements using a feature selection method [J].
Keles, S ;
van der Laan, M ;
Eisen, MB .
BIOINFORMATICS, 2002, 18 (09) :1167-1175