Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl thiophene)/carbon nanotube composite cathode

被引:26
作者
Kim, Dong-Won [1 ]
Sivakkumar, S. R. [2 ]
MacFarlane, Douglas R. [2 ]
Forsyth, Maria [3 ]
Sun, Yang-Kook [4 ]
机构
[1] Hanbat Natl Univ, Dept Appl Chem, Taejon 305719, South Korea
[2] Monash Univ, ARC, Ctr Excellence Electromat Sci, Sch Chem, Clayton, Vic 3800, Australia
[3] Monash Univ, ARC, Ctr Excellence Electromat Sci, Dept Mat Engn, Clayton, Vic 3800, Australia
[4] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea
关键词
carbon nanotube; conducting polymer; ionic liquid; lithium metal polymer cell; poly(3-methylthiophene); safety;
D O I
10.1016/j.jpowsour.2008.01.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety. (C) 2008 Published by Elsevier B.V.
引用
收藏
页码:591 / 596
页数:6
相关论文
共 36 条
  • [1] Design of electrolyte solutions for Li and Li-ion batteries: a review
    Aurbach, D
    Talyosef, Y
    Markovsky, B
    Markevich, E
    Zinigrad, E
    Asraf, L
    Gnanaraj, JS
    Kim, HJ
    [J]. ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 247 - 254
  • [2] Safety mechanisms in lithium-ion batteries
    Balakrishnan, PG
    Ramesh, R
    Kumar, TP
    [J]. JOURNAL OF POWER SOURCES, 2006, 155 (02) : 401 - 414
  • [3] The zwitterion effect in ionic liquids: Towards practical rechargeable lithium-metal batteries
    Byrne, N
    Howlett, PC
    MacFarlane, DR
    Forsyth, M
    [J]. ADVANCED MATERIALS, 2005, 17 (20) : 2497 - +
  • [4] Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids
    Cheng, Hu
    Zhu, Changbao
    Huang, Bin
    Lu, Mi
    Yang, Yong
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (19) : 5789 - 5794
  • [5] Mixed ionic liquid as electrolyte for lithium batteries
    Diaw, A
    Chagnes, A
    Carré, B
    Willmann, P
    Lemordant, D
    [J]. JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 682 - 684
  • [6] Charge-discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation
    Egashira, Minato
    Tanaka-Nakagawa, Maika
    Watanabe, Izumi
    Okada, Shigeto
    Yamaki, Jun-ichi
    [J]. JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1387 - 1390
  • [7] Room temperature molten salt as medium for lithium battery
    Fung, YS
    Zhou, RQ
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 891 - 895
  • [8] Ionic liquids as electrolytes
    Galinski, Maciej
    Lewandowski, Andrzej
    Stepniak, Izabela
    [J]. ELECTROCHIMICA ACTA, 2006, 51 (26) : 5567 - 5580
  • [9] Gao M, 2000, ANGEW CHEM INT EDIT, V39, P3664, DOI 10.1002/1521-3773(20001016)39:20<3664::AID-ANIE3664>3.0.CO
  • [10] 2-Y