Understanding and improving salt tolerance in plants

被引:868
作者
Chinnusamy, V
Jagendorf, A
Zhu, JK [1 ]
机构
[1] Univ Calif Riverside, Inst Integrat Genome Biol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
[3] Indian Agr Res Inst, Water Technol Ctr, New Delhi 110012, India
[4] Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA
关键词
D O I
10.2135/cropsci2005.0437
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
One-fifth of irrigated agriculture is adversely affected by soil salinity. Hence, developing salt-tolerant crops is essential for sustaining food production. Progress in breeding for salt-tolerant crops has been hampered by the lack of understanding of the molecular basis of salt tolerance and lack of availability of genes that confer salt tolerance. Genetic evidence suggests that perception of salt stress leads to a cytosolic calcium-signal that activates the calcium sensor protein SOS3. SOS3 binds to and activates a ser/thr protein kinase SOS2. The activated SOS2 kinase regulates activities of SOS1, a plasma membrane Na+/H+ antiporter, and NHX1, a tonoplast Na+/H+ antiporter. This results in Na+ efflux and vacuolar compartmentation. A putative osmosensory histidine kinase (AtHK1)-MAPK cascade probably regulates osmotic homeostasis and ROS scavenging. Osmotic stress and ABA (abscisic acid)-mediated regulation of LEA (late-embryogenesis-abundant)-type proteins also play important roles in plant salt tolerance. Genetic engineering of ion transporters and their regulators, and of the CBF (C-repeat-binding factor) regulons, holds promise for future development of salt-tolerant crops.
引用
收藏
页码:437 / 448
页数:12
相关论文
共 118 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity [J].
Abebe, T ;
Guenzi, AC ;
Martin, B ;
Cushman, JC .
PLANT PHYSIOLOGY, 2003, 131 (04) :1748-1755
[3]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[4]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[5]   Strategies for engineering water-stress tolerance in plants [J].
Bohnert, HJ ;
Jensen, RG .
TRENDS IN BIOTECHNOLOGY, 1996, 14 (03) :89-97
[6]   Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes [J].
Chen, THH ;
Murata, N .
CURRENT OPINION IN PLANT BIOLOGY, 2002, 5 (03) :250-257
[7]  
Chinnusamy V, 2003, TOP CURR GENET, V4, P241
[8]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[9]   OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J].
Dubouzet, JG ;
Sakuma, Y ;
Ito, Y ;
Kasuga, M ;
Dubouzet, EG ;
Miura, S ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT JOURNAL, 2003, 33 (04) :751-763
[10]   Arabidopsis thaliana AtHAL3:: a flavoprotein related to salt and osmotic tolerance and plant growth [J].
Espinosa-Ruiz, A ;
Bellés, JM ;
Serrano, R ;
Culiáñez-Macià, FA .
PLANT JOURNAL, 1999, 20 (05) :529-539