Optimal estimation and Cramer-Rao bounds for partial non-gaussian state space models

被引:31
作者
Bergman, N
Doucet, A
Gordon, N
机构
[1] Linkoping Univ, Div Automat Control, S-58183 Linkoping, Sweden
[2] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
[3] Def Evaluat & Res Agcy, Malvern WR14 3PS, Worcs, England
关键词
optimal estimation; Bayesian inference; sequential Monte Carlo methods; posterior Cramer-Rao bounds;
D O I
10.1023/A:1017920621802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial non-Gaussian state-space models include many models of interest while keeping a convenient analytical structure. In this paper, two problems related to partial non-Gaussian models are addressed. First, we present an efficient sequential Monte Carlo method to perform Bayesian inference. Second, we derive simple recursions to compute posterior Cramer-Rao bounds (PCRB). An application to jump Markov linear systems (JMLS) is given.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 34 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]  
[Anonymous], 1997, THESIS U PARIS SUD O
[3]  
Bar-Shalom Y., 1995, MULTITARGET MULTISEN
[4]   Terrain navigation using Bayesian statistics [J].
Bergman, N ;
Ljung, L ;
Gustafsson, F .
IEEE CONTROL SYSTEMS MAGAZINE, 1999, 19 (03) :33-40
[5]  
Bergman N., 1999, THESIS U LINKOPING S
[6]  
BOROBSKY BZ, 1975, IEEE T AUTOMAT CONTR, V20, P785
[7]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[8]   Markov chain Monte Carlo in conditionally Gaussian state space models [J].
Carter, CK ;
Kohn, R .
BIOMETRIKA, 1996, 83 (03) :589-601
[9]  
CRISAN D, 2001, SEQUENTIAL MONTE CAR
[10]  
CRISAN D, 1999, MARKOV PROCESSES REL, V5, P293