Optimal estimation and Cramer-Rao bounds for partial non-gaussian state space models

被引:31
作者
Bergman, N
Doucet, A
Gordon, N
机构
[1] Linkoping Univ, Div Automat Control, S-58183 Linkoping, Sweden
[2] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
[3] Def Evaluat & Res Agcy, Malvern WR14 3PS, Worcs, England
关键词
optimal estimation; Bayesian inference; sequential Monte Carlo methods; posterior Cramer-Rao bounds;
D O I
10.1023/A:1017920621802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial non-Gaussian state-space models include many models of interest while keeping a convenient analytical structure. In this paper, two problems related to partial non-Gaussian models are addressed. First, we present an efficient sequential Monte Carlo method to perform Bayesian inference. Second, we derive simple recursions to compute posterior Cramer-Rao bounds (PCRB). An application to jump Markov linear systems (JMLS) is given.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 34 条
[31]  
WEST M, 1993, J ROY STAT SOC B, V55, P409
[32]  
West M., 2006, Bayesian forecasting and dynamic models
[33]  
West M., 1993, COMPUTER SCI STAT, P325
[34]  
[No title captured]