Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers

被引:200
作者
Bayburt, TH
Sligar, SG
机构
[1] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
关键词
self-assembly; seven-transmembrane protein; phospholipid; bilayer; membrane proteomics; nanodisc;
D O I
10.1110/ps.03267503
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the biggest challenges in pharmaceutical research is obtaining integral membrane proteins in a functional, solubilized, and monodisperse state that provides a native-like environment that maintains the spectrum of in vivo activities. Many of these integral membrane proteins are receptors, enzymes, or other macromolecular assemblies that are important drug targets. An example is the general class of proteins composed of seven-transmembrane segments (7-TM) as exemplified by the G-protein-coupled receptors. In this article, we describe a simple system for self-assembling bacteriorhodopsin, as a model protein containing 7-TM helices, with phospholipids to form a nanometer-scale soluble bilayer structure encircled by a 200 amino acid scaffold protein. The result is the single molecule incorporation of an integral membrane protein target into a soluble and monodisperse structure that allows the structural and functional tools of solution biochemistry to be applied.
引用
收藏
页码:2476 / 2481
页数:6
相关论文
共 26 条