Structural and thermodynamic features of spiroiminodihydantoin damaged DNA duplexes

被引:46
作者
Jia, L
Shafirovich, V
Shapiro, R
Geacintov, NE
Broyde, S
机构
[1] NYU, Dept Chem, New York, NY 10031 USA
[2] NYU, Dept Biol, New York, NY 10031 USA
关键词
D O I
10.1021/bi050790v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidation of guanine or 8-oxo-7,8-dihydroguanine can produce spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G -> C and G -> T transversion mutations. Therefore, they are of interest as potential endogenous cancer causing lesions. However, their structural properties in DNA duplexes remain to be elucidated. We have employed computational methods to study the Sp lesions in 11 -mer DNA duplexes with A, C, G, and T partners. Molecular dynamics simulations have been carried out to obtain ensembles of structures, and the trajectories were employed to analyze the structures and compute free energies. The structural and thermodynamic analyses reveal that the Sp stereoisomers energetically favor positioning in the B-DNA major groove, with minor groove conformers also low energy in some cases, depending on the partner base. The R and S stereoisomers adopt opposite orientations with respect to the 5' to 3' direction of the modified strand. Both syn and anti glycosidic bond conformations are energetically feasible, with partner base and stereochemistry determining the preference. The lesions adversely impact base stacking and Watson-Crick hydrogen bonding interactions in the duplex, and cause groove widening. The chemical nature of the partner base determines specific hydrogen bonding and stacking properties of the damaged duplexes. The structural characteristics may relate to observed mutagenic properties of the Sp stereoisomers, including possible stereoisomer-dependent differences.
引用
收藏
页码:13342 / 13353
页数:12
相关论文
共 94 条
[1]   Spiroiminodihydantoin is a major product in the photooxidation of 2′-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis [J].
Adam, W ;
Arnold, MA ;
Grune, M ;
Nau, WM ;
Pischel, U ;
Saha-Möller, CR .
ORGANIC LETTERS, 2002, 4 (04) :537-540
[2]   CONFORMATIONAL-ANALYSIS OF SUGAR RING IN NUCLEOSIDES AND NUCLEOTIDES - NEW DESCRIPTION USING CONCEPT OF PSEUDOROTATION [J].
ALTONA, C ;
SUNDARALINGAM, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1972, 94 (23) :8205-+
[3]   Insights into the DNA repair process by the formamidopyrimidine-DNA glycosylase investigated by molecular dynamics [J].
Amara, P ;
Serre, L ;
Castaing, B ;
Thomas, A .
PROTEIN SCIENCE, 2004, 13 (08) :2009-2021
[4]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   THE NUCLEIC-ACID DATABASE - A COMPREHENSIVE RELATIONAL DATABASE OF 3-DIMENSIONAL STRUCTURES OF NUCLEIC-ACIDS [J].
BERMAN, HM ;
OLSON, WK ;
BEVERIDGE, DL ;
WESTBROOK, J ;
GELBIN, A ;
DEMENY, T ;
HSIEH, SH ;
SRINIVASAN, AR ;
SCHNEIDER, B .
BIOPHYSICAL JOURNAL, 1992, 63 (03) :751-759
[7]   Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress [J].
Boiteux, S ;
Radicella, JP .
BIOCHIMIE, 1999, 81 (1-2) :59-67
[8]   ELECTROCHEMICAL AND ENZYMIC OXIDATION OF BIOLOGICAL PURINES [J].
BRAJTERTOTH, A ;
GOYAL, RN ;
WRONA, MZ ;
LACAVA, T ;
NGUYEN, NT ;
DRYHURST, G .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1981, 8 (04) :413-435
[9]   MOLECULAR-STRUCTURE OF THE G-A BASE PAIR IN DNA AND ITS IMPLICATIONS FOR THE MECHANISM OF TRANSVERSION MUTATIONS [J].
BROWN, T ;
HUNTER, WN ;
KNEALE, G ;
KENNARD, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (08) :2402-2406
[10]  
Cadet J, 1997, Rev Physiol Biochem Pharmacol, V131, P1