Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

被引:2229
作者
Rupp, Matthias [1 ,2 ]
Tkatchenko, Alexandre [2 ,3 ]
Mueller, Klaus-Robert [1 ,2 ]
von Lilienfeld, O. Anatole [2 ,4 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[4] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
CHEMICAL UNIVERSE; VIRTUAL EXPLORATION; THERMOCHEMISTRY; EXCHANGE;
D O I
10.1103/PhysRevLett.108.058301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrodinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of similar to 10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.
引用
收藏
页数:5
相关论文
共 38 条
  • [1] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [2] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652
  • [3] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [4] Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
  • [5] Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
    Behler, Joerg
    Martonak, Roman
    Donadio, Davide
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [6] BOND ENERGIES
    BENSON, SW
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1965, 42 (09) : 502 - &
  • [7] 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13
    Blum, Lorenz C.
    Reymond, Jean-Louis
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8732 - +
  • [8] Ab initio molecular simulations with numeric atom-centered orbitals
    Blum, Volker
    Gehrke, Ralf
    Hanke, Felix
    Havu, Paula
    Havu, Ville
    Ren, Xinguo
    Reuter, Karsten
    Scheffler, Matthias
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2175 - 2196
  • [9] Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface
    Brown, A
    Braams, BJ
    Christoffel, K
    Jin, Z
    Bowman, JM
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (17) : 8790 - 8793
  • [10] DIFFUSION MAPS, REDUCTION COORDINATES, AND LOW DIMENSIONAL REPRESENTATION OF STOCHASTIC SYSTEMS
    Coifman, R. R.
    Kevrekidis, I. G.
    Lafon, S.
    Maggioni, M.
    Nadler, B.
    [J]. MULTISCALE MODELING & SIMULATION, 2008, 7 (02) : 842 - 864