Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture

被引:178
作者
Esteve-Núñez, A [1 ]
Rothermich, M [1 ]
Sharma, M [1 ]
Lovley, D [1 ]
机构
[1] Univ Massachusetts, Dept Microbiol, Morrill Sci Ctr IVN, Amherst, MA 01003 USA
关键词
D O I
10.1111/j.1462-2920.2005.00731.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 mu M) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.
引用
收藏
页码:641 / 648
页数:8
相关论文
共 48 条
[1]  
Anderson R.T., 1999, Bioremediation J, V3, P121, DOI DOI 10.1080/10889869991219271
[2]   Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J].
Anderson, RT ;
Vrionis, HA ;
Ortiz-Bernad, I ;
Resch, CT ;
Long, PE ;
Dayvault, R ;
Karp, K ;
Marutzky, S ;
Metzler, DR ;
Peacock, A ;
White, DC ;
Lowe, M ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5884-5891
[3]   SPECIFICITY AND BIOLOGICAL DISTRIBUTION OF COENZYME M (2-MERCAPTOETHANESULFONIC ACID) [J].
BALCH, WE ;
WOLFE, RS .
JOURNAL OF BACTERIOLOGY, 1979, 137 (01) :256-263
[4]   GEOBACTER SULFURREDUCENS SP-NOV, A HYDROGEN-OXIDIZING AND ACETATE-OXIDIZING DISSIMILATORY METAL-REDUCING MICROORGANISM [J].
CACCAVO, F ;
LONERGAN, DJ ;
LOVLEY, DR ;
DAVIS, M ;
STOLZ, JF ;
MCINERNEY, MJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (10) :3752-3759
[5]   ACETATE CATABOLISM IN THE DISSIMILATORY IRON-REDUCING ISOLATE GS-15 [J].
CHAMPINE, JE ;
GOODWIN, S .
JOURNAL OF BACTERIOLOGY, 1991, 173 (08) :2704-2706
[6]   RATES OF MICROBIAL-METABOLISM IN DEEP COASTAL-PLAIN AQUIFERS [J].
CHAPELLE, FH ;
LOVLEY, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1865-1874
[7]   COMPETITIVE-EXCLUSION OF SULFATE REDUCTION BY FE(III)-REDUCING BACTERIA - A MECHANISM FOR PRODUCING DISCRETE ZONES OF HIGH-IRON GROUND-WATER [J].
CHAPELLE, FH ;
LOVLEY, DR .
GROUND WATER, 1992, 30 (01) :29-36
[8]   Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens [J].
Chin, KJ ;
Esteve-Núñez, A ;
Leang, C ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (09) :5183-5189
[9]   Development of a genetic system for Geobacter sulfurreducens [J].
Coppi, MV ;
Leang, C ;
Sandler, SJ ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3180-3187
[10]   Preferential reduction of Fe(III) over fumarate by Geobacter sulfurreducens [J].
Esteve-Nuñez, A ;
Nuñez, C ;
Lovley, DR .
JOURNAL OF BACTERIOLOGY, 2004, 186 (09) :2897-2899