Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives

被引:25
作者
Pei, Xiaowei [1 ,2 ]
Liu, Weimin [1 ]
Hao, Jingcheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] Shandong Univ, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
关键词
carbon nanotubes; functionalization of polymers; lubricant additives; reversible addition fragmentation chain transfer (RAFT); XPS;
D O I
10.1002/pola.22639
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymer-grafted multiwalled carbon nanotube (MWCNT) hybrid composite which possess a hard backbone of MWCNT and a soft shell of brush-like polystyrene (PSt) were synthesized. The reversible addition fragmentation chain transfer (RAFT) agents were successfully immobilized onto the surface of MWCNT first, and PSt chains were subsequently grafted from sidewall of MWCNT via RAFT polymerization. Chemical structure of resulting product and the quantities of grafted polymer were determined by Fourier transform infrared, thermal gravimetric analysis, nuclear magnetic resonance, and X-ray photoelectron spectra. Transmission electron microscopy and field emission scanning electron microscopy images clearly indicate that the nanotubes were coated with a polymer layer. Furthermore, the functionalized MWCNT as additives was added to base lubricant and the tribological property of resultant MWCNT lubricant was investigated with four-ball machines. The results indicate that the functionalization led to an improvement in the dispersion of MWCNT and as additives it amended the tribological property of base lubricant. The mechanism of the significant improvements on the tribological properties of the functionalized MWCNT as additives was discussed. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:3014 / 3023
页数:10
相关论文
共 40 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]  
Bai RK, 2000, POLYM INT, V49, P898, DOI 10.1002/1097-0126(200008)49:8<898::AID-PI517>3.0.CO
[3]  
2-2
[4]   Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization [J].
Baskaran, D ;
Mays, JW ;
Bratcher, MS .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2138-2142
[5]   Can carbon nanotubes be considered useful tools for biological applications? [J].
Bianco, A ;
Prato, M .
ADVANCED MATERIALS, 2003, 15 (20) :1765-1768
[6]   Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive [J].
Chen, CS ;
Chen, XH ;
Xu, LS ;
Yang, Z ;
Li, WH .
CARBON, 2005, 43 (08) :1660-1666
[7]   Solution properties of single-walled carbon nanotubes [J].
Chen, J ;
Hamon, MA ;
Hu, H ;
Chen, YS ;
Rao, AM ;
Eklund, PC ;
Haddon, RC .
SCIENCE, 1998, 282 (5386) :95-98
[8]   Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization [J].
Cui, J ;
Wang, WP ;
You, YZ ;
Liu, CH ;
Wang, PH .
POLYMER, 2004, 45 (26) :8717-8721
[9]  
Gao M, 2000, ANGEW CHEM INT EDIT, V39, P3664, DOI 10.1002/1521-3773(20001016)39:20<3664::AID-ANIE3664>3.0.CO
[10]  
2-Y