Fast linear iterations for distributed averaging

被引:163
作者
Xiao, L [1 ]
Boyd, S [1 ]
机构
[1] Stanford Univ, Informat Syst Lab, Stanford, CA 94305 USA
来源
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS | 2003年
关键词
distributed consensus; linear system; spectral radius; semidefinite program;
D O I
10.1109/CDC.2003.1272421
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several simple heuristics that are based on the Laplacian matrix of the associated graph.
引用
收藏
页码:4997 / 5002
页数:6
相关论文
共 18 条
[1]  
[Anonymous], LINEAR ALGEBRA APPL
[2]   NP-hardness of some linear control design problems [J].
Blondel, V ;
Tsitsiklis, JN .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (06) :2118-2127
[3]  
BOYD S, 2003, UNPUB SIAM REV
[4]  
Boyd S., 2003, CONVEX OPTIMIZATION
[5]  
FAX A, 2002, P 15 IFAC WORLD C AU
[6]  
Fazel M, 2001, P AMER CONTR CONF, P4734, DOI 10.1109/ACC.2001.945730
[7]  
Godsil C., 2001, ALGEBRAIC GRAPH THEO
[8]  
JADBABAIE A, 2003, IN PRESS IEEE T AUTO
[9]  
Lewis A. S., 1996, Acta Numerica, V5, P149, DOI 10.1017/S0962492900002646
[10]  
Lynch N. A., 1996, DISTRIBUTED ALGORITH