Multi-component Ermakov systems: Structure and linearization

被引:49
作者
Rogers, C
Schief, WK
机构
[1] School of Mathematics, University of New South Wales, Sydney
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jmaa.1996.0076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A symmetry reduction of a (2 + 1)-dimensional nonlinear N-layer fluid model is shown to lead to a prototype for an N-component extension of the classical Ermakov system. The general N-component Ermakov system introduced here has the attractive property that it may be iteratively reduced to a system of N-2 linear equations augmented by a canonical 2-component Ermakov system. The recently established linearization procedure for the latter may then be used to solve the N-component system N > 2 in generality. The procedure is illustrated, in detail, for a 3-component system. Sequences of classical 2-component Ermakov systems are shown to be linked via Darboux transformations. (C) 1996 Academic Press, Inc.
引用
收藏
页码:194 / 220
页数:27
相关论文
共 58 条
[32]  
LUTSKY M, 1980, PHYS LETT A, V79, P301
[33]  
LUTSKY M, 1980, J MATH PHYS A, V21, P1370
[34]  
Matveev VB., 1991, DARBOUX TRANSFORMATI
[35]   GENERAL N-SOLITON SOLUTION OF THE AKNS CLASS ON ARBITRARY BACKGROUND [J].
NEUGEBAUER, G ;
MEINEL, R .
PHYSICS LETTERS A, 1984, 100 (09) :467-470
[36]  
PINNEY E, 1950, P AM MATH SOC, V27, P61
[37]   NON-LINEAR SUPERPOSITION LAW FOR GENERALIZED ERMAKOV SYSTEMS [J].
RAY, JR .
PHYSICS LETTERS A, 1980, 78 (01) :4-6
[38]   NEW NON-LINEAR DYNAMICAL-SYSTEMS POSSESSING INVARIANTS [J].
RAY, JR ;
REID, JL ;
LUTZKY, M .
PHYSICS LETTERS A, 1981, 84 (02) :42-44
[39]   ERMAKOV SYSTEMS, VELOCITY DEPENDENT POTENTIALS, AND NON-LINEAR SUPERPOSITION [J].
RAY, JR ;
REID, JL .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (01) :91-95
[40]   INVARIANTS FOR NON-LINEAR EQUATIONS OF MOTION [J].
RAY, JR .
PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (03) :877-882