Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors

被引:157
作者
Scott, DB
Blanpied, TA
Ehlers, MD [1 ]
机构
[1] Duke Univ, Med Ctr, Cell & Mol Biol Program, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Cell Biol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
[4] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
关键词
glutamate receptors; phosphorylation; RXR; ER retention; trafficking; PKA; PKC;
D O I
10.1016/S0028-3908(03)00250-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Endoplasmic reticulum (ER) retention mediated by the RXR (Arg-X-Arg) motif is an important quality control mechanism used by G-protein Coupled receptors and ion channels, including N-methyl-D-aspartate (NMDA) receptors, to ensure the proper assembly and trafficking of multimeric complexes. During assembly, RXR motifs are masked by intersubunit interactions thereby allowing ER release. Here, we find that PKA and PKC phosphorylation sites flanking the RXR motif of the NMDA receptor NR1 subunit suppress ER retention and regulate receptor forward trafficking. These sites are differentially phosphorylated during the trafficking of NR1 subunits in vivo, and phosphorylation at these sites occurs in early secretory compartments. In addition, residues near the RXR motif not involved in phosphorylation are also required for ER retention. These results indicate that ER retention of NMDA receptors is tightly regulated, and suggest that coordinated phosphorylation by PKA and PKC mediates release of receptors from the ER for subsequent traffic to synapses. Phosphorylation-induced ER export of RXR-containing channels and receptors may serve as a novel quality control mechanism for creating a readily releasable pool of receptors sensitive to the activation of intracellular signaling pathways. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 61 条
[1]   NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity [J].
Ali, DW ;
Salter, MW .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :336-342
[2]   Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79 [J].
Altier, C ;
Dubel, SJ ;
Barrère, C ;
Jarvis, SE ;
Stotz, SC ;
Spaetgens, RL ;
Scott, JD ;
Cornet, V ;
De Waard, M ;
Zamponi, GW ;
Nargeot, J ;
Bourinet, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :33598-33603
[3]   Kinase signaling initiates coat complex II (COPII) recruitment and export from the mammalian endoplasmic reticulum [J].
Aridor, M ;
Balch, WE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35673-35676
[4]   Subunit-specific NMDA receptor trafficking to synapses [J].
Barria, A ;
Malinow, R .
NEURON, 2002, 35 (02) :345-353
[5]   Receptor trafficking and the plasticity of excitatory synapses [J].
Barry, MF ;
Ziff, EB .
CURRENT OPINION IN NEUROBIOLOGY, 2002, 12 (03) :279-286
[6]   Long-term depression in hippocampus [J].
Bear, MF ;
Abraham, WC .
ANNUAL REVIEW OF NEUROSCIENCE, 1996, 19 :437-462
[7]   Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex [J].
Beaver, CJ ;
Ti, QH ;
Fischer, QS ;
Daw, NW .
NATURE NEUROSCIENCE, 2001, 4 (02) :159-163
[8]  
BERGMANN JE, 1989, METHOD CELL BIOL, V32, P85
[9]   NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity [J].
Carroll, RC ;
Zukin, RS .
TRENDS IN NEUROSCIENCES, 2002, 25 (11) :571-577
[10]  
Chang SY, 2002, J CELL SCI, V115, P783