Heat kernel coefficients for Chern-Simons boundary conditions in QED

被引:18
作者
Elizalde, E
Vassilevich, DV
机构
[1] CSIC, Inst Estudis Espacials Catalunya, ES-08034 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain
[3] Univ Barcelona, Fac Fis, IFAE, E-08028 Barcelona, Spain
[4] Univ Leipzig, Fak Phys & Geowissensch, Inst Theoret Phys, D-04109 Leipzig, Germany
关键词
D O I
10.1088/0264-9381/16/3/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the four-dimensional Euclidean Maxwell theory with a Chem-Simons term on the boundary. The corresponding gauge-invariant boundary conditions become dependent on tangential derivatives. Taking the 4-sphere as a particular example, we calculate explicitly a number of thr first heat kernel coefficients and obtain the general formulae that yield any desired coefficient. A remarkable observation is that the coefficient a(2), which defines the I-loop counterterm and the conformal anomaly, does not depend on the Chern-Simons coupling constant, while the heat kernel itself becomes singular at a certain (critical) value of the coupling. This could be a reflection of a general property of Chem-Simons theories.
引用
收藏
页码:813 / 822
页数:10
相关论文
共 34 条
[1]   Gauge theories on manifolds with boundary [J].
Avramidi, IG ;
Esposito, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) :495-543
[2]   New invariants in the 1-loop divergences on manifolds with boundary [J].
Avramidi, IG ;
Esposito, G .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) :281-297
[3]   Boundary operators in Euclidean quantum gravity [J].
Avramidi, IG ;
Esposito, G ;
Kamenshchik, AY .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) :2361-2373
[4]   Lack of strong ellipticity in Euclidean quantum gravity [J].
Avramidi, IG ;
Esposito, G .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) :1141-1152
[5]   THE WAVE-FUNCTION AND THE EFFECTIVE ACTION IN QUANTUM COSMOLOGY - COVARIANT LOOP EXPANSION [J].
BARVINSKY, AO .
PHYSICS LETTERS B, 1987, 195 (03) :344-348
[6]   Casimir energies for massive scalar fields in a spherical geometry [J].
Bordag, M ;
Elizalde, E ;
Kirsten, K ;
Leseduarte, S .
PHYSICAL REVIEW D, 1997, 56 (08) :4896-4904
[7]   Heat kernel coefficients of the Laplace operator on the D-dimensional ball [J].
Bordag, M ;
Elizalde, E ;
Kirsten, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) :895-916
[8]   Vacuum expectation value asymptotics for second order differential operators on manifolds with boundary [J].
Branson, TP ;
Gilkey, PB ;
Vassilevich, DV .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) :1040-1049
[9]  
DESER S, 1982, PHYS REV LETT, V48, P372
[10]   Heat-kernel coefficients for oblique boundary conditions [J].
Dowker, JS ;
Kirsten, K .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (09) :L169-L175