Vacuum expectation value asymptotics for second order differential operators on manifolds with boundary

被引:31
作者
Branson, TP [1 ]
Gilkey, PB
Vassilevich, DV
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
关键词
D O I
10.1063/1.532369
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a compact Riemannian manifold with smooth boundary. We study the vacuum expectation value of an operator Q by studying Tr(L)2Qe(-tD), where D is an operator of Laplace type on M, and where Q is a second order operator with scalar leading symbol, we impose Dirichlet or modified Neumann boundary conditions. (C) 1998 American Institute of Physics. [S0022-2488(98)03102-8].
引用
收藏
页码:1040 / 1049
页数:10
相关论文
共 8 条
[1]  
Birrell N. D., 1982, Quantum fields in curved space
[2]  
BRANSON T, 1997, B UNIONE MATE ITAL S, V7, P39
[3]  
Branson T. P., 1992, Differential Geometry and its Applications, V2, P249, DOI 10.1016/0926-2245(92)90013-D
[4]   RESIDUES OF THE ETA-FUNCTION FOR AN OPERATOR OF DIRAC TYPE [J].
BRANSON, TP ;
GILKEY, PB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 108 (01) :47-87
[5]   THE ASYMPTOTICS OF THE LAPLACIAN ON A MANIFOLD WITH BOUNDARY [J].
BRANSON, TP ;
GILKEY, PB .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (02) :245-272
[6]   PATH-INTEGRAL MEASURE FOR GAUGE-INVARIANT FERMION THEORIES [J].
FUJIKAWA, K .
PHYSICAL REVIEW LETTERS, 1979, 42 (18) :1195-1198
[7]  
Gilkey P. B., 1975, J. Diff. Geom., V10, P601, DOI [DOI 10.4310/JDG/1214433164, 10.4310/jdg/1214433164]
[8]  
GILKEY PB, 1994, INVARIANCE THEORY HE