We present a computational model and algorithm for detecting diffuse and specular interface reflections and some inter-reflections. Our color reflection model is based on the dichromatic model for dielectric materials and on a color space, called S space, formed with three orthogonal basis functions. We transform color pixels measured in RGB into the S space and analyze color variations on objects in terms of brightness, hue and saturation which are defined in the S space. When transforming the original RGB data into the S space, we discount the scene illumination color that is estimated using a white reference plate as an active probe. As a result, the color image appears as if the scene illumination is white. Under the whitened illumination, the interface reflection clusters in the S space are all aligned with the brightness direction. The brightness, hue and saturation values exhibit a more direct correspondence to body colors and to diffuse and specular interface reflections, shading, shadows and interreflections than the RGB coordinates. We exploit these relationships to segment the color image, and to separate specular and diffuse interface reflections and some inter-reflections from body reflections. The proposed algorithm is efficacious for uniformly colored dielectric surfaces under singly colored scene illumination. Experimental results conform to our model and algorithm within the limitations discussed.