Cryogenic operation of third-generation, 200-GHz peak-fT, silicon-germanium heterojunction bipolar transistors

被引:40
作者
Banerjee, B [1 ]
Venkataraman, S
Lu, Y
Liang, QQ
Lee, CH
Nuttinck, S
Heo, D
Chen, YJE
Cressler, JD
Laskar, J
Freeman, G
Ahgren, DC
机构
[1] Georgia Inst Technol, Georgia Elect Design Ctr, Atlanta, GA 30308 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30308 USA
[3] Silicon Proc Opt Grp, B-3001 Heverlee, Belgium
[4] Washington State Univ, Dept Elect Engn & Comp Sci, Pullman, WA 99164 USA
[5] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
[6] IBM Microelect, Hopewell Jct, NY 12533 USA
关键词
broad-band noise; cryogenic temperature; extremec environments; heterojunction bipolar transistor (HBT); high-frequency noise; silicon-germanium (SiGe);
D O I
10.1109/TED.2005.845078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a comprehensive investigation of the cryogenic performance of third-generation silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technology. Measurements of the current-voltage (dc), small-signal ac, and broad-band noise characteristics of a 200-GHz SiGe HBT were made at 85 K, 120 K, 150 K, 200 K, and 300 K. These devices show excellent behavior down to 85 K, maintaining reasonable dc ideality, with a peak current gain of 3800, a peak cut-off frequency (f(T)) of 260 GHz, a peak fa. of 310 GHz, and a minimum noise figure (NFmin) of approximately 0.30 dB at a frequency of 14 GHz, in all cases representing significant improvements over their corresponding values at 300 K. These results demonstrate that aggressively scaled SiGe HBTs are inherently well suited for cryogenic electronics applications requiring extreme levels of transistor performance.
引用
收藏
页码:585 / 593
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 2003, SILICON GERMANIUM HE
[2]  
Banerjee B, 2003, IEEE BIPOL BICMOS, P171
[3]   SiGe HBT technology: A new contender for Si-based RF and microwave circuit applications [J].
Cressler, JD .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (05) :572-589
[4]   AN EPITAXIAL EMITTER-CAP SIGE-BASE BIPOLAR TECHNOLOGY OPTIMIZED FOR LIQUID-NITROGEN TEMPERATURE OPERATION [J].
CRESSLER, JD ;
CRABBE, EF ;
COMFORT, JH ;
SUN, JYC ;
STORK, JMC .
IEEE ELECTRON DEVICE LETTERS, 1994, 15 (11) :472-474
[5]   ON THE PROFILE DESIGN AND OPTIMIZATION OF EPITAXIAL SI-BASE AND SIGE-BASE BIPOLAR TECHNOLOGY FOR 77-K APPLICATIONS .1. TRANSISTOR DC DESIGN CONSIDERATIONS [J].
CRESSLER, JD ;
COMFORT, JH ;
CRABBE, EF ;
PATTON, GL ;
STORK, JMC ;
SUN, JYC ;
MEYERSON, BS .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (03) :525-541
[6]  
Greenberg DR, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P787, DOI 10.1109/IEDM.2002.1175956
[7]   Self-aligned SiGeNPN transistors with 285 GHz fMAX and 207 GHz fT in a manufacturable technology [J].
Jagannathan, B ;
Khater, M ;
Pagette, F ;
Rieh, JS ;
Angell, D ;
Chen, H ;
Florkey, J ;
Golan, F ;
Greenberg, DR ;
Groves, R ;
Jeng, SJ ;
Johnson, J ;
Mengistu, E ;
Schonenberg, KT ;
Schnabel, CM ;
Smith, P ;
Stricker, A ;
Ahlgren, D ;
Freeman, G ;
Stein, K ;
Subbanna, S .
IEEE ELECTRON DEVICE LETTERS, 2002, 23 (05) :258-260
[8]   OPERATION OF SIGE HETEROJUNCTION BIPOLAR-TRANSISTORS IN THE LIQUID-HELIUM TEMPERATURE REGIME [J].
JOSEPH, AJ ;
CRESSLER, JD ;
RICHEY, DM .
IEEE ELECTRON DEVICE LETTERS, 1995, 16 (06) :268-270
[9]  
LASKAR J, 1993, MICROWAVE J, V36, P104
[10]  
LIANG Q, IN PRESS IEEE ELECT