Fast-ion Dα measurements of the fast-ion distribution (invited)

被引:86
作者
Heidbrink, W. W. [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
关键词
D O I
10.1063/1.3478739
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The fast-ion D alpha (FIDA) diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer-alpha light with a large Doppler shift. The spectral shift is exploited to distinguish the FIDA emission from other bright sources of D alpha light. Background subtraction is the main technical challenge. A spectroscopic diagnostic typically achieves temporal, energy, and transverse spatial resolution of similar to 1 ms, similar to 10 keV, and similar to 2 cm, respectively. Installations that use narrow-band filters achieve high spatial and temporal resolution at the expense of spectral information. For high temporal resolution, the bandpass-filtered light goes directly to a photomultiplier, allowing detection of similar to 50 kHz oscillations in FIDA signal. For two-dimensional spatial profiles, the bandpass-filtered light goes to a charge-coupled device camera; detailed images of fast-ion redistribution at instabilities are obtained. Qualitative and quantitative models relate the measured FIDA signals to the fast-ion distribution function. The first quantitative comparisons between theory and experiment found excellent agreement in beam-heated magnetohydrodynamics (MHD)-quiescent plasmas. FIDA diagnostics are now in operation at magnetic-fusion facilities worldwide. They are used to study fast-ion acceleration by ion cyclotron heating, to detect fast-ion transport by MHD modes and microturbulence, and to study fast-ion driven instabilities. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478739]
引用
收藏
页数:8
相关论文
共 40 条
[1]   The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya) [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Reimerdes, H. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Podesta, M. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[2]   A tangentially viewing fast ion D-alpha diagnostic for NSTX [J].
Bortolon, A. ;
Heidbrink, W. W. ;
Podesta, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10)
[3]   Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments [J].
Choi, M. ;
Green, D. ;
Heidbrink, W. W. ;
Harvey, R. ;
Liu, D. ;
Chan, V. S. ;
Berry, L. A. ;
Jaeger, F. ;
Lao, L. L. ;
Pinsker, R. I. ;
Podesta, M. ;
Smithe, D. N. ;
Park, J. M. ;
Bonoli, P. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[4]  
Corinaldi Michael, COMMUNICATION
[5]  
DELABIE E, 2008, REV SCI INSTRUM, V79, pNI525
[6]   Reconstruction of gyrotropic phase-space distributions from one-dimensional projections [J].
Egedal, J ;
Bindslev, H .
PHYSICS OF PLASMAS, 2004, 11 (05) :2191-2198
[7]   DETERMINATION OF PLASMA-ION VELOCITY DISTRIBUTION VIA CHARGE-EXCHANGE RECOMBINATION SPECTROSCOPY [J].
FONCK, RJ ;
DARROW, DS ;
JAEHNIG, KP .
PHYSICAL REVIEW A, 1984, 29 (06) :3288-3309
[8]  
GARCIAMUNOZ M, 2010, COMMUNICATION
[9]  
GEIGER B, PLASMA PHYS CO UNPUB
[10]   Beta-induced Alfven-acoustic eigenmodes in National Spherical Torus Experiment and DIII-D driven by beam ions [J].
Gorelenkov, N. N. ;
Van Zeeland, M. A. ;
Berk, H. L. ;
Crocker, N. A. ;
Darrow, D. ;
Fredrickson, E. ;
Fu, G. -Y. ;
Heidbrink, W. W. ;
Menard, J. ;
Nazikian, R. .
PHYSICS OF PLASMAS, 2009, 16 (05)