Optimal control methods for rapidly time-varying Hamiltonians

被引:85
作者
Motzoi, F. [1 ,2 ]
Gambetta, J. M. [1 ,3 ]
Merkel, S. T. [1 ,2 ]
Wilhelm, F. K. [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevA.84.022307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Quantum control of the hyperfine spin of a Cs atom ensemble [J].
Chaudhury, Souma ;
Merkel, Seth ;
Herr, Tobias ;
Silberfarb, Andrew ;
Deutsch, Ivan H. ;
Jessen, Poul S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[2]   Optimized driving of superconducting artificial atoms for improved single-qubit gates [J].
Chow, J. M. ;
DiCarlo, L. ;
Gambetta, J. M. ;
Motzoi, F. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2010, 82 (04)
[3]   Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit [J].
Chow, J. M. ;
Gambetta, J. M. ;
Tornberg, L. ;
Koch, Jens ;
Bishop, Lev S. ;
Houck, A. A. ;
Johnson, B. R. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[4]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[5]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[6]  
de Fouquieres P., 2010, ARXIV10043492
[7]   Optimal Control Technique for Many-Body Quantum Dynamics [J].
Doria, Patrick ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[8]   Optimal control of circuit quantum electrodynamics in one and two dimensions [J].
Fisher, R. ;
Helmer, F. ;
Glaser, S. J. ;
Marquardt, F. ;
Schulte-Herbrueggen, T. .
PHYSICAL REVIEW B, 2010, 81 (08)
[9]   Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator [J].
Gambetta, J. M. ;
Motzoi, F. ;
Merkel, S. T. ;
Wilhelm, F. K. .
PHYSICAL REVIEW A, 2011, 83 (01)
[10]   BAND-SELECTIVE RADIOFREQUENCY PULSES [J].
GEEN, H ;
FREEMAN, R .
JOURNAL OF MAGNETIC RESONANCE, 1991, 93 (01) :93-141