A local spectral inversion of a linearized TV model for denoising and deblurring

被引:11
作者
Candela, VF [1 ]
Marquina, A [1 ]
Serna, S [1 ]
机构
[1] Univ Valencia, Dept Matemat Aplicada, E-46100 Burjassot, Spain
关键词
deblurring; image denoising; TV restoration;
D O I
10.1109/TIP.2003.812760
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a model for denoising and deblurring consisting of a system of linear partial differential equations with locally constant coefficients, obtained as a local linearization of the total variation models [9]. The keypoint of our model is to get the local inversion of the Laplacian operator, which will be done via the Fast Fourier Transform (FFT). Two local schemes will be developed: a pointwise and a piecewise one. We will analyze both, their advantages and their limitations.
引用
收藏
页码:808 / 816
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1977, SOLUTION ILL POSED P
[2]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[3]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977
[4]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[5]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[6]   Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal [J].
Marquina, A ;
Osher, S .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :387-405
[7]   SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS [J].
MARTUCCI, SA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (05) :1038-1051
[8]   Restoring images degraded by spatially variant blur [J].
Nagy, JG ;
O'Leary, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (04) :1063-1082
[9]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[10]  
RUDIN LI, 1994, IEEE IMAGE PROC, P31