Solvation dynamics in acetonitrile: A study incorporating solute electronic response and nuclear relaxation

被引:54
作者
Ingrosso, F
Ladanyi, BM [1 ]
Mennucci, B
Elola, MD
Tomasi, J
机构
[1] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
[2] Univ Pisa, Dipartimento Chim & Chim Ind, I-56126 Pisa, Italy
关键词
D O I
10.1021/jp0456032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solvent reorganization process after electronic excitation of a polar solute in a polar solvent such as acetonitrile is related mainly to the time evolution of the solute-solvent electrostatic interaction. Modern laser-based techniques have sufficient time resolution to follow this decay in real time, providing information to be confirmed and interpreted by theories and models. We present here a study aimed at the investigation of the different steps involved in the process taking place after a vertical So --> S, excitation of a large size chromophore, coumarin 153 (C153), in acetonitrile, from both the solute and the solvent points of view. To do this, we use accurate quantum mechanical calculations for the solute properties within the polarizable continuum model (PCM) and classical molecular dynamics (MD) simulations, both equilibrium and nonequilibrium, for C153 in the presence of the solvent. The geometry of the solute is allowed to change in order to study the role of internal motions in the time-dependent solvation process. The solvent response function has been obtained from the simulation data and compared to experiment, while the comparison between equilibrium and nonequilibrium MD results for the solvation response confirms the validity of the linear response approximation in the C153-acetonitrile system. The MD trajectories have also been used to monitor the structure of the solvation shell and to determine its change in response to the change in the solute partial charges.
引用
收藏
页码:3553 / 3564
页数:12
相关论文
共 83 条
[1]   Solvatochromism in a near-critical solution: A direct correlation with local solution structure [J].
Adams, JE .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (38) :7455-7461
[2]   Nonlinear, nonpolar solvation dynamics in water: The roles of electrostriction and solvent translation in the breakdown of linear response [J].
Aherne, D ;
Tran, V ;
Schwartz, BJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5382-5394
[3]  
ALLEN MP, 1989, COMPUTET SIMULATION
[4]   DIELECTRIC-RELAXATION DYNAMICS OF WATER AND METHANOL SOLUTIONS ASSOCIATED WITH THE IONIZATION OF N,N-DIMETHYLANILINE - THEORETICAL ANALYSES [J].
ANDO, K ;
KATO, S .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (08) :5966-5982
[6]  
Barbara P. F., 1990, ADV PHOTOCHEM, V15, P1, DOI [DOI 10.1002/9780470133453.CHL, DOI 10.1103/PhysRevLett.88.158101]
[7]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[8]   Electronic spectral shifts, reorganization energies, and local density augmentation of Coumarin 153 in supercritical solvents [J].
Biswas, R ;
Lewis, JE ;
Maroncelli, M .
CHEMICAL PHYSICS LETTERS, 1999, 310 (5-6) :485-494
[9]   Solvation dynamics in nonassociated polar solvents [J].
Biswas, R ;
Bagchi, B .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (15) :2495-2500
[10]   AN EFFECTIVE PAIR POTENTIAL FOR LIQUID ACETONITRILE [J].
BOHM, HJ ;
MCDONALD, IR ;
MADDEN, PA .
MOLECULAR PHYSICS, 1983, 49 (02) :347-360