Uteroglobin (UG) suppresses extracellular matrix invasion by normal and cancer cells that express the high affinity UG-binding proteins

被引:41
作者
Kundu, GC [1 ]
Mandal, AK [1 ]
Zhang, ZJ [1 ]
Mantile-Selvaggi, G [1 ]
Mukherjee, AB [1 ]
机构
[1] NICHD, Sect Dev Genet, Heritable Disorders Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.273.35.22819
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Uteroglobin (UG) is a steroid-inducible, multifunctional, secreted protein with antiinflammatory and antichemotactic properties. Recently, we have reported a high affinity UG-binding protein (putative receptor), on several cell types, with an apparent molecular mass of 190 kDa (Kundu, G. C., Mantile, G., Miele, L., Cordella-Miele, E., and Mukherjee, A. B. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2915-2919). Since UG is a homodimer in which the 70 amino acid subunits are connected by two disulfide bonds, we sought to determine whether UG monomers also interact with the 190-kDa UG-binding protein and if so, whether it has the same biological activity as the dimer. Surprisingly, we discovered that in addition to the 190-kDa species, another protein, with an apparent molecular mass of 49 kDa, binds reduced UG with high affinity and specificity. Both 49- and 190-kDa proteins are readily detectable on nontransformed NIH 3T3 and some murine cancer cells (e.g. mastocytoma, sarcoma, and lymphoma), while lacking on others (e.g. fibrosarcoma). Most interestingly, pretreatment of the cells, which express the binding proteins, with reduced UG dramatically suppresses extracellular matrix (ECM) invasion, when such treatment had no effect on fibrosarcoma cells that lack the UG-binding proteins. Tissue-specific expression studies confirmed that while both 190- and 49-kDa UG-binding proteins are present in bovine heart, spleen, and the liver, only the 190-kDa protein is detectable in the trachea and in the lung. Neither the 190-kDa nor the 49-kDa protein was detectable in the aorta. Purification of these binding proteins from bovine spleen by UG-affinity chromatography and analysis by SDS-polyacrylamide gel electrophoresis followed by silver staining identified two protein bands with apparent molecular masses of 40 and 180 kDa, respectively. Treatment of the NIH 3T3 cells with specific cytokines (i.e. interleukin-6) and other agonists (i.e. lipopolysaccharide) caused a substantially increased level of I-125-UG binding but the same cells, when treated with platelet-derived growth factor, tumor necrosis factor-alpha, interferon-gamma, and phorbol 12-myristate 13-acetate, did not alter the UG binding. Taken together, these findings raise the possibility that UG, through its binding proteins, plays critical roles in the regulation of cellular motility and ECM invasion.
引用
收藏
页码:22819 / 22824
页数:6
相关论文
共 69 条
  • [21] THE BINDING OF METHYLSULFONYL-POLYCHLORO-BIPHENYLS TO UTEROGLOBIN
    GILLNER, M
    LUND, J
    CAMBILLAU, C
    ALEXANDERSSON, M
    HURTIG, U
    BERGMAN, A
    KLASSONWEHLER, E
    GUSTAFSSON, JA
    [J]. JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1988, 31 (01) : 27 - 33
  • [22] TISSUE-SPECIFIC EXPRESSION, HORMONAL-REGULATION AND 5'-FLANKING GENE REGION OF THE RAT CLARA CELL-10KDA PROTEIN - COMPARISON TO RABBIT UTEROGLOBIN
    HAGEN, G
    WOLF, M
    KATYAL, SL
    SINGH, G
    BEATO, M
    SUSKE, G
    [J]. NUCLEIC ACIDS RESEARCH, 1990, 18 (10) : 2939 - 2946
  • [23] HUMAN CC10 GENE-EXPRESSION IN AIRWAY EPITHELIUM AND SUBCHROMOSOMAL LOCUS SUGGEST LINKAGE TO AIRWAY DISEASE
    HAY, JG
    DANEL, C
    CHU, CS
    CRYSTAL, RG
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1995, 268 (04) : L565 - L575
  • [24] Cloning, characterization, and steroid-dependent posttranscriptional processing of RUSH-1 alpha and beta, two uteroglobin promoter-binding proteins
    HaywardLester, A
    Hewetson, A
    Beale, EG
    Oefner, PJ
    Doris, PA
    Chilton, BS
    [J]. MOLECULAR ENDOCRINOLOGY, 1996, 10 (11) : 1335 - 1349
  • [25] Novel elements in the uteroglobin promoter are a functional target for prolactin signaling
    Hewetson, A
    Chilton, BS
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1997, 136 (01) : 1 - 6
  • [26] Hynes R. O., 1990, FIBRONECTINS
  • [27] PURIFICATION AND PARTIAL AMINO-ACID SEQUENCE OF HUMAN-URINE PROTEIN-1 - EVIDENCE FOR HOMOLOGY WITH RABBIT UTEROGLOBIN
    JACKSON, PJ
    TURNER, R
    KEEN, JN
    BROOKSBANK, RA
    COOPER, EH
    [J]. JOURNAL OF CHROMATOGRAPHY, 1988, 452 : 359 - 367
  • [28] Structural motifs in rheumatoid T-cell receptors
    Kieber-Emmons, T
    Fang, Q
    Cai, W
    Friedman, SM
    Crow, MK
    Lotke, P
    Williams, WV
    [J]. DNA AND CELL BIOLOGY, 1998, 17 (02) : 133 - 149
  • [29] DETECTION OF A UTEROGLOBIN-LIKE PHOSPHOLIPASE-A2 INHIBITORY PROTEIN IN THE CIRCULATION OF RABBITS
    KIKUKAWA, T
    MUKHERJEE, AB
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1989, 62 (02) : 177 - 187
  • [30] PROLACTIN AUGMENTS PROGESTERONE-DEPENDENT UTEROGLOBIN GENE-EXPRESSION BY MODULATING PROMOTER-BINDING PROTEINS
    KLEISSANFRANCISCO, S
    HEWETSON, A
    CHILTON, BS
    [J]. MOLECULAR ENDOCRINOLOGY, 1993, 7 (02) : 214 - 223