Nanoscale Discharge Electrode for Minimizing Ozone Emission from Indoor Corona Devices

被引:36
作者
Bo, Zheng [1 ]
Yu, Kehan [1 ]
Lu, Ganhua [1 ]
Mao, Shun [1 ]
Chen, Junhong [1 ,2 ]
Fan, Fa-gung [3 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Mech Engn, Milwaukee, WI 53211 USA
[2] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
[3] Xerox Corp, Xerox Res Ctr Webster, Webster, NY 14580 USA
基金
美国国家科学基金会;
关键词
NEGATIVE DC CORONA; CARBON NANOTUBES; ORGANIC-CHEMICALS; FIELD-EMISSION; ADSORPTION; GENERATION;
D O I
10.1021/es903917f
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function Federal regulations call for effective techniques to minimize the indoor ozone production In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 05 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.
引用
收藏
页码:6337 / 6342
页数:6
相关论文
共 42 条
[31]   Effect of ozone oxidation on single-walled carbon nanotubes [J].
Simmons, JM ;
Nichols, BM ;
Baker, SE ;
Marcus, MS ;
Castellini, OM ;
Lee, CS ;
Hamers, RJ ;
Eriksson, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (14) :7113-7118
[32]  
SKALNY JD, 2008, PHYS SCR
[33]   Plasma chemical and electrical modelling of a negative DC corona in pure oxygen [J].
Soria, C ;
Pontiga, F ;
Castellanos, A .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2004, 13 (01) :95-107
[34]   Nanoscale Corona Discharge in Liquids, Enabling Nanosecond Optical Emission Spectroscopy [J].
Staack, David ;
Fridman, Alexander ;
Gutsol, Alexander ;
Gogotsi, Yury ;
Friedman, Gary .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (42) :8020-8024
[35]   Chemistry of carbon nanotubes [J].
Tasis, D ;
Tagmatarchis, N ;
Bianco, A ;
Prato, M .
CHEMICAL REVIEWS, 2006, 106 (03) :1105-1136
[36]  
*US EPA, 1997, HLTH ENV EFF GROUNDL
[37]   OZONE GENERATION IN DC-ENERGIZED ELECTROSTATIC PRECIPITATORS [J].
VINER, AS ;
LAWLESS, PA ;
ENSOR, DS ;
SPARKS, LE .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1992, 28 (03) :504-512
[38]   Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge [J].
Wang, Pengxiang ;
Chen, Junhong .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (03)
[39]   Sorption and Competition of Aromatic Compounds and Humic Acid on Multiwalled Carbon Nanotubes [J].
Wang, Xilong ;
Tao, Shu ;
Xing, Baoshan .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (16) :6214-6219
[40]  
White H.J., 1963, IND ELECTROSTATIC PR