Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata

被引:314
作者
Halitschke, R [1 ]
Baldwin, IT [1 ]
机构
[1] Max Planck Inst Chem Ecol, Dept Mol Ecol, D-07745 Jena, Germany
关键词
jasmonates; herbivore resistance; lipoxygenase; nicotine; trypsin protease inhibitors; quantitative PCR;
D O I
10.1046/j.1365-313X.2003.01921.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Inhibition of jasmonic acid (JA) signaling has been shown to decrease herbivore resistance, but the responsible mechanisms are largely unknown because insect resistance is poorly understood in most model plant systems. We characterize three members of the lipoxygenase (LOX) gene family in the native tobacco plant Nicotiana attenuata and manipulate, by antisense expression, a specific, wound- and herbivory-induced isoform (LOX3) involved in JA biosynthesis. In three independent lines, antisense expression reduced wound-induced JA accumulation but not the release of green leaf volatiles (GLVs). The impaired JA signaling reduced two herbivore-induced direct defenses, nicotine and trypsin protease inhibitors (TPI), as well as the potent indirect defense, the release of volatile terpenes that attract generalist predators to feeding herbivores. All these defenses could be fully restored by methyl-JA (MeJA) treatment, with the exception of the increase in TPI activity, which was partially restored, suggesting the involvement of additional signals. The impaired ability to produce chemical defenses resulted in lower resistance to Manduca sexta attack, which could also be restored by MeJA treatment. Expression analysis using a cDNA microarray, specifically designed to analyze M. sexta-induced gene expression in N. attenuata, revealed a pivotal role for LOX3-produced oxylipins in upregulating defense genes (protease inhibitor, PI; xyloglucan endotransglucosylase/hydrolase, XTH; threonine deaminase, TD; hydroperoxide lyase, HPL), suppressing both downregulated growth genes (RUBISCO and photosystem II, PSII) and upregulated oxylipin genes (alpha-dioxygenase, alpha-DOX). By genetically manipulating signaling in a plant with a well-characterized ecology, we demonstrate that the complex phenotypic changes that mediate herbivore resistance are controlled by a specific part of the oxylipin cascade.
引用
收藏
页码:794 / 807
页数:14
相关论文
共 54 条
[51]   Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata [J].
Van Dam, NM ;
Horn, M ;
Mares, M ;
Baldwin, IT .
JOURNAL OF CHEMICAL ECOLOGY, 2001, 27 (03) :547-568
[52]   Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta [J].
Voelckel, C ;
Krügel, T ;
Gase, K ;
Heidrich, N ;
van Dam, NM ;
Winz, R ;
Baldwin, IT .
CHEMOECOLOGY, 2001, 11 (03) :121-126
[53]   Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata.: IV.: Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts [J].
Winz, RA ;
Baldwin, IT .
PLANT PHYSIOLOGY, 2001, 125 (04) :2189-2202
[54]   Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuata [J].
Ziegler, J ;
Keinänen, M ;
Baldwin, IT .
PHYTOCHEMISTRY, 2001, 58 (05) :729-738