A subspace preconditioning algorithm for eigenvector/eigenvalue computation

被引:53
作者
Bramble, JH
Pasciak, JE
Knyazev, AV
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
[2] UNIV COLORADO,DEPT MATH,DENVER,CO 80217
关键词
D O I
10.1007/BF02127702
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of computing a modest number of the smallest eigenvalues along with orthogonal bases for the corresponding eigenspaces of a symmetric positive definite operator A defined on a finite dimensional real Hilbert space V. In our applications, the dimension of V is large and the cost of inverting A is prohibitive. In this paper, we shall develop an effective parallelizable technique for computing these eigenvalues and eigenvectors utilizing subspace iteration and preconditioning for A. Estimates will be provided which show that the preconditioned method converges linearly when used with a uniform preconditioner under the assumption that the approximating subspace is close enough to the span of desired eigenvectors.
引用
收藏
页码:159 / 189
页数:31
相关论文
共 54 条
  • [1] [Anonymous], 1989, DOMAIN DECOMPOSITION
  • [2] [Anonymous], 3 INT S DOM DEC METH
  • [3] [Anonymous], DOMAIN DECOMPOSITION
  • [4] A GENERALIZED CONJUGATE-GRADIENT, LEAST-SQUARE METHOD
    AXELSSON, O
    [J]. NUMERISCHE MATHEMATIK, 1987, 51 (02) : 209 - 227
  • [5] BIRKHOFF G, 1984, ELLIPTIC PROBLEM SOL, V2
  • [6] BJORSTAD PE, 1984, ELLIPTIC PROBLEM SOL, V2, P245
  • [7] NEW ESTIMATES FOR MULTILEVEL ALGORITHMS INCLUDING THE V-CYCLE
    BRAMBLE, JH
    PASCIAK, JE
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 447 - 471
  • [8] BRAMBLE JH, 1991, MATH COMPUT, V57, P1, DOI 10.1090/S0025-5718-1991-1090464-8
  • [9] BRAMBLE JH, 1987, MATH COMPUT, V49, P1, DOI 10.1090/S0025-5718-1987-0890250-4
  • [10] BRAMBLE JH, 1989, MATH COMPUT, V53, P1