Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization

被引:79
作者
Stearns, LA
Gryko, J
Diefenbacher, J
Ramachandran, GK
McMillan, PF
机构
[1] UCL, Dept Chem, Christopher Ingold Lab, London WC1H 0AJ, England
[2] Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA
[3] Jacksonville State Univ, Dept Phys & Earth Sci, Jacksonville, AL 36265 USA
[4] Arizona State Univ, Ctr Solid State Sci, Tempe, AZ 85287 USA
[5] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA
[6] UCL Royal Inst Great Britain, Davy Faraday Res Labs, London W1S 4BS, England
基金
美国国家科学基金会;
关键词
lithium monosilicide; silicides; high pressure synthesis; low-dimensional silicon; solid-state NMR; Raman scattering; metastable phase transitions;
D O I
10.1016/S0022-4596(03)00045-8
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Lithium monosilicide (LiSi) was formed at high pressures and high temperatures (1.0-2.5 GPa and 500-700degreesC) in a piston-cylinder apparatus. This compound was previously shown to have an unusual structure based on 3-fold coordinated silicon atoms arranged into interpenetrating sheets. In the present investigation, lowered synthesis pressures permitted recovery of large (150-200 mg) quantities of sample for structural studies via NMR spectroscopy (Si-29 and Li-7), Raman spectroscopy and electrical conductivity measurements. The Si-29 chemical shift occurs at - 106.5 ppm, intermediate between SiH4 and Si(Si(CH3)(3))(4), but lies off the trend established by the other alkali monosilicides (NaSi, KSi, RbSi, CsSi), that contain isolated Si-4(4-) anions. Raman spectra show a strong peak at 508 cm(-1) due to symmetric Si-Si stretching vibrations, at lower frequency than for tetrahedrally coordinated Si frameworks, due to the longer Si-Si bonds in the 3-coordinated silicide. Higher frequency vibrations occur due to asymmetric stretching. Electrical conductivity measurements indicate LiSi is a narrow-gap semiconductor (E(b)similar to0.057eV). There is a rapid increase in conductivity above T = 450 K, that might be due to the onset of Li+ mobility. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1996, CHEM STRUCTURE BONDI
[2]   TIGHT-BINDING APPROACH TO THE SOLID-STATE STRUCTURE OF THE COMPLEX ZINTL-PHASE LI12SI7 [J].
BOHM, MC ;
RAMIREZ, R ;
NESPER, R ;
VONSCHNERING, HG .
PHYSICAL REVIEW B, 1984, 30 (08) :4870-4873
[3]   REFINEMENT OF CRYSTAL STRUCTURE OF BLACK PHOSPHOROUS [J].
BROWN, A ;
RUNDQVIST, S .
ACTA CRYSTALLOGRAPHICA, 1965, 19 :684-+
[4]  
Cros C., 1970, J SOLID STATE CHEM, V2, P570, DOI [DOI 10.1016/0022-4596(70)90053-8, 10.1016/0022-4596(70)90053-8]
[5]  
Engelhardt G., 1987, HIGH RESOLUTION SOLI
[6]  
Evers J, 1997, EUR J SOL STATE INOR, V34, P773
[7]   HIGH-PRESSURE SYNTHESIS OF LISI - 3-DIMENSIONAL NETWORK OF 3-BONDED SI- IONS [J].
EVERS, J ;
OEHLINGER, G ;
SEXTL, G .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1993, 32 (10) :1442-1444
[8]   Low-density framework form of crystalline silicon with a wide optical band gap [J].
Gryko, J ;
McMillan, PF ;
Marzke, RF ;
Ramachandran, GK ;
Patton, D ;
Deb, SK ;
Sankey, OF .
PHYSICAL REVIEW B, 2000, 62 (12) :R7707-R7710
[9]   NMR and X-ray spectroscopy of sodium-silicon clathrates [J].
He, JL ;
Klug, DD ;
Uehara, K ;
Preston, KF ;
Ratcliffe, CI ;
Tse, JS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (17) :3475-3485
[10]   THE ELECTRICAL PROPERTIES OF BLACK PHOSPHORUS [J].
KEYES, RW .
PHYSICAL REVIEW, 1953, 92 (03) :580-584