Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli

被引:84
作者
Tatarko, M [1 ]
Romeo, T [1 ]
机构
[1] Univ N Texas, Hlth Sci Ctr, Dept Mol Biol & Immunol, Ft Worth, TX 76107 USA
关键词
D O I
10.1007/s002840010255
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Genetic engineering of microbes for commercial metabolite production traditionally has sought to alter the levels and/or intrinsic activities of key enzymes in relevant biosynthetic pathway(s). Microorganisms exploit similar strategies for flux control, but also coordinate flux through sets of related pathways by using global regulatory circuits. We have engineered a global regulatory system of Escherichia coli, Csr (carbon storage regulator), to increase precursor for aromatic amino acid biosynthesis. Disruption of csrA increases gluconeogenesis, decreases glycolysis, and thus elevates phosphoenolpyruvate, a limiting precursor of aromatics. A strain in which the aromatic (shikimate) pathway had been optimized produced twofold more phenylalanine when csrA was disrupted. Overexpression of tktA (transketolase) to increase the other precursor, erythrose-4-phosphate, yielded similar to1.4-fold enhance ment, while both changes were additive. These effects of csrA were not mediated by increasing the regulatory enzymes of phenylalanine biosynthesis. This study introduces the concept of "global metabolic engineering" for second-generation strain improvement.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 24 条
[1]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[2]   Improving production of aromatic compounds in Escherichia coli by metabolic engineering [J].
Berry, A .
TRENDS IN BIOTECHNOLOGY, 1996, 14 (07) :250-256
[3]  
DOPHEIDE TA, 1972, J BIOL CHEM, V247, P4447
[5]   BIOCATALYTIC SYNTHESIS OF AROMATICS FROM D-GLUCOSE - THE ROLE OF TRANSKETOLASE [J].
DRATHS, KM ;
POMPLIANO, DL ;
CONLEY, DL ;
FROST, JW ;
BERRY, A ;
DISBROW, GL ;
STAVERSKY, RJ ;
LIEVENSE, JC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (10) :3956-3962
[6]   COLORIMETRIC METHOD FOR DETERMINATION OF SUGARS AND RELATED SUBSTANCES [J].
DUBOIS, M ;
GILLES, KA ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
ANALYTICAL CHEMISTRY, 1956, 28 (03) :350-356
[7]   Pathway engineering for the production of aromatic compounds in Escherichia coli [J].
Flores, N ;
Xiao, J ;
Berry, A ;
Bolivar, F ;
Valle, F .
NATURE BIOTECHNOLOGY, 1996, 14 (05) :620-623
[8]   A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli [J].
Gosset, G ;
YongXiao, J ;
Berry, A .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1996, 17 (01) :47-52
[9]   The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein [J].
Liu, MY ;
Romeo, T .
JOURNAL OF BACTERIOLOGY, 1997, 179 (14) :4639-4642
[10]   THE PRODUCT OF THE PLEIOTROPIC ESCHERICHIA-COLI GENE CSRA MODULATES GLYCOGEN BIOSYNTHESIS VIA EFFECTS ON MESSENGER-RNA STABILITY [J].
LIU, MY ;
YANG, HH ;
ROMEO, T .
JOURNAL OF BACTERIOLOGY, 1995, 177 (10) :2663-2672