Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte

被引:48
作者
Ali, T. Mohamed [1 ,2 ]
Padmanathan, N. [1 ]
Selladurai, S. [1 ]
机构
[1] Anna Univ, Ion Lab, Dept Phys, Madras 600025, Tamil Nadu, India
[2] Aalim Muhammed Salegh Coll Engn, Madras 600055, Tamil Nadu, India
关键词
Solid polymer electrolyte; XRD; FTIR; Impedance spectra; Conductivity; Dielectrics; POLY(ETHYLENE OXIDE); IONIC-CONDUCTIVITY; THERMAL-PROPERTIES; IMPEDANCE; LITHIUM; SPECTROSCOPY; POLYETHER; TRANSPORT; TRIFLATE; FILLERS;
D O I
10.1007/s11581-014-1240-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel combination of nanoparticles of rare earth oxide ceria (CeO2) dispersed in polyethylene oxide (PEO)/polyethylene glycol (PEG) blend polymer doped with cation donor salt lithium perchlorate (LiClO4), and ethylene carbonate (EC) nanocomposite polymer electrolyte (NCPE) was prepared by standard solution casting technique. The X-ray diffraction (XRD) patterns reveal that the amorphous nature of the nanocomposite has been increased considerably on dispersion of nanofiller. The complexation was further confirmed by Fourier transform infrared (FTIR) analysis. The impedance spectroscopy technique was used to measure the ionic conductivity and activation energy of the nanocomposite electrolytes. The maximum ambient temperature conductivity of 1.18 x 10(-4) Scm(-1) was obtained for the nanocomposite of 68 % PEO, 16 % PEG, 11 % LiClO4, 5 % EC, and 1 % CeO2 by weight percentage. The ac conductivity follows the universal power law. The variation of dielectric permittivity, dielectric loss, and modulus spectra with frequency and temperature was consistent with conductivity. The activation energy calculated from temperature-dependent imaginary modulus well coincides with that of conductivity. The loss tangent ascertains the presence of conductivity relaxation and the minimum relaxation time for highest conducting electrolyte.
引用
收藏
页码:829 / 840
页数:12
相关论文
共 51 条
[1]   Structural, conductivity, and dielectric characterization of PEO-PEG blend composite polymer electrolyte dispersed with TiO2 nanoparticles [J].
Ali, T. Mohamed ;
Padmanathan, N. ;
Selladurai, S. .
IONICS, 2013, 19 (08) :1115-1123
[2]  
Armand M, 1978, 2 INT M SOL EL ST AN
[3]   Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane [J].
Aziz, S. B. ;
Abidin, Z. H. Z. ;
Arof, A. K. .
EXPRESS POLYMER LETTERS, 2010, 4 (05) :300-310
[4]   Structure, thermal and transport properties of PVAc-LiClO4 solid polymer electrolytes [J].
Baskaran, R. ;
Selvasekarapandian, S. ;
Kuwata, N. ;
Kawamura, J. ;
Hattori, T. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (03) :407-412
[5]   ac impedance, DSC and FT-IR investigations on (x)PVAc-(1-x)PVdF blends with LiClO4 [J].
Baskaran, R. ;
Selvasekarapandian, S. ;
Kuwata, N. ;
Kawamura, J. ;
Hattori, T. .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 98 (01) :55-61
[6]   Characterization of plasticized solid polymer electrolyte by XRD and AC impedance methods [J].
Benedict, TJ ;
Banumathi, S ;
Veluchamy, A ;
Gangadharan, R ;
Ahamad, AZ ;
Rajendran, S .
JOURNAL OF POWER SOURCES, 1998, 75 (01) :171-174
[7]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[8]  
Bruce PG, 1997, SOLID STATE ELECTRON, P119
[9]   The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay [J].
Chen, HW ;
Chang, FC .
POLYMER, 2001, 42 (24) :9763-9769
[10]   SM2O3 composite PEO solid polymer electrolyte [J].
Chu, PP ;
Reddy, MJ .
JOURNAL OF POWER SOURCES, 2003, 115 (02) :288-294