Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane

被引:182
作者
Aziz, S. B. [1 ]
Abidin, Z. H. Z. [1 ]
Arof, A. K. [1 ]
机构
[1] Univ Malaya, Fac Sci, Dept Phys, Ctr Ion, Kuala Lumpur 50603, Malaysia
来源
EXPRESS POLYMER LETTERS | 2010年 / 4卷 / 05期
关键词
polymer membranes; electrical modulus; impedance analysis; UV-vis analysis; transmission electron microscopy; DIELECTRIC-RELAXATION; AC CONDUCTIVITY; POLYOL PROCESS; NANOPARTICLES; TRANSPORT; BEHAVIOR; GLASSES; NANOCOMPOSITES; TEMPERATURE; DISPERSION;
D O I
10.3144/expresspolymlett.2010.38
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The electric modulus properties of solid polymer electrolyte based on chitosan: AgCF(3)SO(3) from 303 to 393 K have been investigated by using impedance spectroscopy. The shift of the M '' peak spectra with frequeny depends on the dissociation and association of ions. The lowest conductivity relaxation time tau(sigma), was found for the sample with the highest conductivity. The real part of electrical modulus shows that the material is highly capacitive. The asymmetric peak of the imaginary part of electric modulus M '', predicts a non Debye type relaxation. The distribution of relaxation times was indicated by a deformed arc form of Argand plot. The increase of M' and M '' values above 358 K can be attributed to the transformation of silver ions to silver nanoparticles. The complex impedance plots and ultraviolet-visible (UV-vis) absorption spectroscopy indicate the temperature dependent of silver nanoparticles in chitosan-silver triflate solid electrolyte. The formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM). The scaling behavior of M '' spectra shows that the dynamical relaxation processes is temperature independent for aparticular composition. The beta exponent value indicate that the conductivity relaxation is highly non exponential.
引用
收藏
页码:300 / 310
页数:11
相关论文
共 44 条
[1]   Solid-state electrochromic devices with Nb2O5:: Mo thin film and gelatin-based electrolyte [J].
Avellaneda, Cesar O. ;
Vieira, Diogo E. ;
Al-Kahlout, Amal ;
Leite, Edson R. ;
Pawlicka, Agnieszka ;
Aegerter, Michel A. .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1648-1654
[2]   ac impedance, DSC and FT-IR investigations on (x)PVAc-(1-x)PVdF blends with LiClO4 [J].
Baskaran, R. ;
Selvasekarapandian, S. ;
Kuwata, N. ;
Kawamura, J. ;
Hattori, T. .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 98 (01) :55-61
[3]   Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications [J].
Bhargav, P. Balaji ;
Mohan, V. Madhu ;
Sharma, A. K. ;
Rao, V. V. R. N. .
CURRENT APPLIED PHYSICS, 2009, 9 (01) :165-171
[4]   Relaxation of silver ions in fast ion conducting molybdate glasses [J].
Bhattacharya, S ;
Ghosh, A .
SOLID STATE IONICS, 2005, 176 (13-14) :1243-1247
[5]   Conductivity relaxation in some fast ion-conducting AgI-Ag2O-V2O5 glasses [J].
Bhattacharya, S ;
Ghosh, A .
SOLID STATE IONICS, 2003, 161 (1-2) :61-65
[6]  
CALLEJA RD, 1995, J NON-CRYST SOLIDS, V180, P260, DOI 10.1016/0022-3093(94)00470-6
[7]   AC ionic conductivity investigations on the CsK(SO4)•Te(OH)6 material [J].
Chabchoub, N ;
Khemakhem, H .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 370 (1-2) :8-17
[8]   Molecular dynamics study of the influence of the polarizability in PEOx-NaI polymer electrolyte systems [J].
de Jonge, JJ ;
van Zon, A ;
de Leeuw, SW .
SOLID STATE IONICS, 2002, 147 (3-4) :349-359
[9]   Percolation concepts in solid state ionics [J].
Dieterich, W ;
Dürr, O ;
Pendzig, P ;
Bunde, A ;
Nitzan, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 266 (1-4) :229-237
[10]   Ac conductivity and dielectric relaxation in ionically conducting soda-lime-silicate glasses [J].
Dutta, Alo ;
Sinha, T. P. ;
Jena, P. ;
Adak, S. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (33) :3952-3957