The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster

被引:91
作者
Roze, Ludmila V.
Arthur, Anna E.
Hong, Sung-Yong
Chanda, Anindya
Linz, John E. [1 ]
机构
[1] Michigan State Univ, Dept Food Sci & Human Nutr, E Lansing, MI 48824 USA
[2] Michigan State Univ, Natl Food Safety & Toxicol Ctr, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA
[4] Michigan State Univ, Ctr Integrat Toxicol, E Lansing, MI 48824 USA
关键词
D O I
10.1111/j.1365-2958.2007.05952.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 27 genes involved in aflatoxin biosynthesis are clustered within a 70 kb region in the Aspergillus parasiticus genome. Using chromatin immunoprecipitation, we demonstrated a positive correlation between the initiation and spread of histone H4 acetylation in aflatoxin promoters and the onset of accumulation of aflatoxin proteins and aflatoxin. Histone H4 acetylation in the pksA (encodes an 'early' biosynthetic pathway enzyme) promoter peaked at 30 h, prior to the increased acetylation in the omtA and ordA (encode 'late' enzymes) promoters detected at 40 h. The specific order in which pksA, ver-1 (encodes a'middle'enzyme) and omtA transcripts accumulated in cells paralleled the pattern of spread of histone H4 acetylation. Binding of AflR, a positive regulator of aflatoxin bilosynthesis, to the ordA promoter showed a positive correlation with the spread of histone H4 acetylation. The data suggest that the order of genes within the aflatoxin cluster determines the timing and order of transcriptional activation, and that the site of initiation and spread of histone H4 acetylation mediate this process. Our data indicate that the aflatoxin and adjacent sugar utilization clusters are part of a larger 'regulatory unit'.
引用
收藏
页码:713 / 726
页数:14
相关论文
共 69 条
[1]   Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development [J].
Bhatnagar, Deepak ;
Cary, Jeffrey W. ;
Ehrlich, Kenneth ;
Yu, Jiujiang ;
Cleveland, Thomas E. .
MYCOPATHOLOGIA, 2006, 162 (03) :155-166
[2]   Secondary metabolic gene cluster silencing in Aspergillus nidulans [J].
Bok, Jin Woo ;
Noordermeer, Daan ;
Kale, Shubha P. ;
Keller, Nancy P. .
MOLECULAR MICROBIOLOGY, 2006, 61 (06) :1636-1645
[3]   Genomic mining for Aspergillus natural products [J].
Bok, JW ;
Hoffmeister, D ;
Maggio-Hall, LA ;
Murillo, R ;
Glasner, JD ;
Keller, NP .
CHEMISTRY & BIOLOGY, 2006, 13 (01) :31-37
[4]   LaeA, a regulator of secondary metabolism in Aspergillus spp. [J].
Bok, JW ;
Keller, NP .
EUKARYOTIC CELL, 2004, 3 (02) :527-535
[5]   Large clusters of co-expressed genes in the Drosophila genome [J].
Boutanaev, AM ;
Kalmykova, AI ;
Shevelyov, YY ;
Nurminsky, DI .
NATURE, 2002, 420 (6916) :666-669
[6]   Dothistroma pini, a forest pathogen, contains homologs of aflatoxin biosynthetic pathway genes [J].
Bradshaw, RE ;
Bhatnagar, D ;
Ganley, RJ ;
Gillman, CJ ;
Monahan, BJ ;
Seconi, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (06) :2885-2892
[7]   REGULATION OF AFLATOXIN BIOSYNTHESIS - EFFECT OF GLUCOSE ON ACTIVITIES OF VARIOUS GLYCOLYTIC-ENZYMES [J].
BUCHANAN, RL ;
LEWIS, DF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1984, 48 (02) :306-310
[8]   The human transcriptome map:: Clustering of highly expressed genes in chromosomal domains [J].
Caron, H ;
van Schaik, B ;
van der Mee, M ;
Baas, F ;
Riggins, G ;
van Sluis, P ;
Hermus, MC ;
van Asperen, R ;
Boon, K ;
Voûte, PA ;
Heisterkamp, S ;
van Kampen, A ;
Versteeg, R .
SCIENCE, 2001, 291 (5507) :1289-+
[9]  
Cary J. W., 2000, Microbial foodborne diseases: mechanisms of pathogenesis and toxin synthesis., P317
[10]   Molecular and functional characterization of a second copy of the aflatoxin regulatory gene, aflR-2, from Aspergillus parasiticus [J].
Cary, JW ;
Dyer, JM ;
Ehrlich, KC ;
Wright, MS ;
Liang, SH ;
Linz, JE .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1576 (03) :316-323