Low-complexity fuzzy relational clustering algorithms for Web mining

被引:246
作者
Krishnapuram, R [1 ]
Joshi, A
Nasraoui, O
Yi, LY
机构
[1] Indian Inst Technol, IBM India Res Lab, New Delhi 110016, India
[2] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[3] Univ Maryland, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
[4] Univ Memphis, Dept Elect Engn, Memphis, TN 38152 USA
[5] BoldTech Syst Inc, Denver, CO 80202 USA
基金
美国国家科学基金会;
关键词
document clustering; fuzzy relational clustering; snippet clustering; user access patterns; user profiles; Web mining;
D O I
10.1109/91.940971
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents new algorithms - fuzzy c-medoids (FCMdd) and robust fuzzy c-medoids (RFCMdd) - for fuzzy clustering of relational data. The objective functions are based on selecting c representative objects (medoids) from the data set in such a way that the total fuzzy dissimilarity within each cluster is minimized. A comparison of FCMdd with the well-known relational fuzzy c-means algorithm (RFCM) shows that FCMdd is more efficient. We present several applications of these algorithms to Web mining, including Web document clustering, snippet clustering, and Web access log analysis.
引用
收藏
页码:595 / 607
页数:13
相关论文
共 54 条
[1]  
ABIDI J, 1997, P 7 IEEE INT WORKSH, P20
[2]  
Agrawal R., 1994, P 20 INT C VER LARG, V1215, P487
[3]  
[Anonymous], FINDING GROUPS DATA
[4]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[5]  
Armstrong R., 1995, AAAI SPRING S INF GA, P6
[6]   WebOQL: Restructuring documents, databases and Webs [J].
Arocena, GO ;
Mendelzon, AO .
14TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 1998, :24-33
[7]   Location- and density-based hierarchical clustering using similarity analysis [J].
Bajcsy, P ;
Ahuja, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (09) :1011-1015
[8]   A LEAST BIASED FUZZY CLUSTERING METHOD [J].
BENI, G ;
LIU, XM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (09) :954-960
[9]  
CHEN J, 2000, KNOWLEDGE MANAGEMENT, V163
[10]   Efficient data mining for path traversal patterns [J].
Chen, MS ;
Park, JS ;
Yu, PS .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1998, 10 (02) :209-221