Anodic properties of hollow carbon nanofibers for Li-ion battery

被引:111
作者
Lee, Byoung-Sun [1 ]
Son, Seoung-Bum [1 ,2 ]
Park, Kyu-Min [1 ]
Yu, Woong-Ryeol [1 ]
Oh, Kyu-Hwan [1 ]
Lee, Se-Hee [2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[2] Univ Colorado 427 UCB, Dept Mech Engn, Boulder, CO 80309 USA
[3] Seoul Natl Univ, Dept Mat Sci & Engn, World Class Univ, Hybrid Mat Program, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Hollow carbon nanofibers; Anodic properties; Thermal treatment; Turbostratic carbon structure; CORE-SHELL NANOWIRES; ELECTROCHEMICAL PROPERTIES; MECHANICAL-PROPERTIES; LITHIUM INSERTION; SECONDARY BATTERY; TIN-NANOPARTICLES; HEAT-TREATMENT; HIGH-CAPACITY; PORE-SIZE; POLYACRYLONITRILE;
D O I
10.1016/j.jpowsour.2011.10.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on hollow carbon nanofibers (HCNIrs) as anode materials for Li-ion batteries. Various HCNEs are synthesized using co-axial electrospinning of styrene-co-acrylonitrile (core) and poly(acrylonitrile) (shell) solutions and subsequent thermal treatments. The microstructures of HCNEs are examined using SEM, Raman spectroscopy, WAXD, and HR-TEM. The effect of the carbonization temperature on their turbostratic carbon structures and electrochemical properties is systematically investigated. As the carbonization temperature increases, both crystallite thickness and length significantly increases while the initial irreversible capacity decreases. These predictable microstructure and electrochemical performance of HCNEs provide important insight for the design of novel nanostructurecl anode materials such as Si or Sn encapsulated HCNFs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 52 条
[21]   Electrochemical reactivity of ball-milled MoO3-y as anode materials for lithium-ion batteries [J].
Jung, Yoon S. ;
Lee, Sangkyoo ;
Ahn, Dongjoon ;
Dillon, Anne C. ;
Lee, Se-Hee .
JOURNAL OF POWER SOURCES, 2009, 188 (01) :286-291
[22]   Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J].
Kasavajjula, Uday ;
Wang, Chunsheng ;
Appleby, A. John .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1003-1039
[23]   Electrospun polyacrylonitrile based carbon nanofibers and their hydrogen storages [J].
Kim, DK ;
Park, SH ;
Kim, BC ;
Chin, BD ;
Jo, SM ;
Kim, DY .
MACROMOLECULAR RESEARCH, 2005, 13 (06) :521-528
[24]   Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material [J].
Kim, Hyesun ;
Cho, Jaephil .
NANO LETTERS, 2008, 8 (11) :3688-3691
[25]   Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery [J].
Kim, JS ;
Park, YT .
JOURNAL OF POWER SOURCES, 2000, 91 (02) :172-176
[26]  
LEE BS, 2010, 14 EUR C COMP MAT BU
[27]   PA6/MWNT Nanocomposites Fabricated Using Electrospun Nanofibers Containing MWNT [J].
Lee, Byoung-Sun ;
Yu, Woong-Ryeol .
MACROMOLECULAR RESEARCH, 2010, 18 (02) :162-169
[28]   Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries [J].
Lee, JK ;
An, KW ;
Ju, JB ;
Cho, BW ;
Cho, WI ;
Park, D ;
Yun, KS .
CARBON, 2001, 39 (09) :1299-1305
[29]   Lithium intercalation and deintercalation reactions in synthetic graphite containing a high dispersion of SnO [J].
Lee, JY ;
Zhang, RF ;
Liu, ZL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (04) :167-170
[30]   Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators [J].
Liang, Yinzheng ;
Ji, Liwen ;
Guo, Bingkun ;
Lin, Zhan ;
Yao, Yingfang ;
Li, Ying ;
Alcoutlabi, Mataz ;
Qiu, Yiping ;
Zhang, Xiangwu .
JOURNAL OF POWER SOURCES, 2011, 196 (01) :436-441