Efficacy of Texture, Shape, and Intensity Feature Fusion for Posterior-Fossa Tumor Segmentation in MRI

被引:68
作者
Ahmed, Shaheen [1 ]
Iftekharuddin, Khan M. [1 ,2 ]
Vossough, Arastoo [3 ]
机构
[1] Univ Memphis, Dept Elect & Comp Engn, Memphis, TN 38152 USA
[2] Univ Tennessee, Memphis, TN 38163 USA
[3] Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2011年 / 15卷 / 02期
关键词
Expectation maximization (EM); fractal dimension (FD); Kullback-Leibler divergence (KLD); MRI modalities; multi-fractional Brownian motion (mBm);
D O I
10.1109/TITB.2011.2104376
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 27 条
[11]   Multifractal modeling, segmentation, prediction and statistical validation of posterior fossa tumors [J].
Islam, Atiq ;
Iftekharuddin, Khan M. ;
Ogg, Robert J. ;
Laningham, Fred H. ;
Sivakumar, Bhuvaneswari .
MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
[12]   Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images [J].
Liew, AWC ;
Yan, H .
CURRENT MEDICAL IMAGING, 2006, 2 (01) :91-103
[13]   Divergence based feature selection for multimodal class densities [J].
Novovicova, J ;
Pudil, P ;
Kittler, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (02) :218-223
[14]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[15]  
PARRA C, 2003, 47 ANN SPIE M OPT SC
[16]  
RAAD V, 2003, P IEEE 25 ANN INT C, V1
[17]   AN EFFICIENT APPROACH TO ESTIMATE FRACTAL DIMENSION OF TEXTURAL IMAGES [J].
SARKAR, N ;
CHAUDHURI, BB .
PATTERN RECOGNITION, 1992, 25 (09) :1035-1041
[18]  
Schaap M, 2009, LECT NOTES COMPUT SC, V5636, P528, DOI 10.1007/978-3-642-02498-6_44
[19]   Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-the-art review [J].
Suri, JS ;
Liu, KC ;
Singh, S ;
Laxminarayan, SN ;
Zeng, XL ;
Reden, L .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2002, 6 (01) :8-28
[20]   Abnormal cortical complexity and thickness profiles mapped in Williams syndrome [J].
Thompson, PM ;
Lee, AD ;
Dutton, RA ;
Geaga, JA ;
Hayashi, KM ;
Eckert, MA ;
Bellugi, U ;
Galaburda, AM ;
Korenberg, JR ;
Mills, DL ;
Toga, AW ;
Reiss, AL .
JOURNAL OF NEUROSCIENCE, 2005, 25 (16) :4146-4158