Hydroaromatic equilibration during biosynthesis of shikimic acid

被引:107
作者
Knop, DR
Draths, KM
Chandran, SS
Barker, JL
von Daeniken, R
Weber, W
Frost, JW [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Chem Engn, E Lansing, MI 48824 USA
[3] F Hoffmann La Roche & Co Ltd, Pharmaceut Res, CH-4070 Basel, Switzerland
关键词
D O I
10.1021/ja0109444
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The expense and limited availability of shikimic acid isolated from plants has impeded utilization of this hydroaromatic as a synthetic starting material. Although recombinant Escherichia coli catalysts have been constructed that synthesize shikimic acid from glucose, the yield, titer, and purity of shikimic acid are reduced by the sizable concentrations of quinic acid and 3-dehydroshikimic acid that are formed as byproducts. The 28.0 g/L of shikimic-acid synthesized in 14% yield by E. coli SP1.1/pKD12.138 in 48 h as a 1.6:1.0:0.65 (mol/mol/mol) shikimate/quinate/dehydroshikimate mixture is typical of synthesized product mixtures. Quinic acid formation results from the reduction of 3-dehydroquinic acid catalyzed by aroE-encoded shikimate dehydrogenase. Is quinic acid derived from reduction of 3-dehydroquinic acid prior to synthesis of shikimic acid? Alternatively, does quinic acid result from a microbe-catalyzed equilibration involving transport of initially synthesized shikimic acid back into the cytoplasm and operation of the common pathway of aromatic amino acid biosynthesis in the reverse of its normal biosynthetic direction? E. coli SP1.1/pSC5.214A, a construct incapable of de novo synthesis of shikimic acid, catalyzed the conversion of shikimic acid added to its culture medium into a 1.1:1.0:0.70 molar ratio of shikimate/quinate/dehydroshikimate within 36 h. Further mechanistic insights were afforded by elaborating the relationship between transport of shikimic acid and formation of quinic acid. These experiments indicate that formation of quinic acid during biosynthesis of shikimic acid results from a microbe-catalyzed equilibration of initially synthesized shikimic acid. By apparently repressing shikimate transport, the aforementioned E. coli SP1.1/pKD12.138 synthesized 52 g/L of shikimic acid in 18% yield from glucose as a 14:1.0:3.0 shikimate/quinate/dehydroshikimate mixture.
引用
收藏
页码:10173 / 10182
页数:10
相关论文
共 57 条