Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine

被引:215
作者
Sudarsan, N
Cohen-Chalamish, S
Nakamura, S
Emilsson, GM
Breaker, RR
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[3] Howard Hughes Med Inst, Coconut Grove, FL 33133 USA
来源
CHEMISTRY & BIOLOGY | 2005年 / 12卷 / 12期
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.chembiol.2005.10.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria.
引用
收藏
页码:1325 / 1335
页数:11
相关论文
共 63 条
[1]   New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control [J].
Barrick, JE ;
Corbino, KA ;
Winkler, WC ;
Nahvi, A ;
Mandal, M ;
Collins, J ;
Lee, M ;
Roth, A ;
Sudarsan, N ;
Jona, I ;
Wickiser, JK ;
Breaker, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6421-6426
[2]   DIRECT SELECTIVE PYROPHOSPHORYLATION OF THE PRIMARY HYDROXYL GROUP IN (HYDROXYETHYL)THIAMINE BY MODIFIED PHOSPHORIC-ACID CRESOL SOLUTIONS AND EVALUATION OF EXTENSION OF THE METHOD TO NUCLEOSIDES [J].
BEARNE, SL ;
GISH, G ;
KARIMIAN, K ;
KLUGER, R .
BIOORGANIC CHEMISTRY, 1989, 17 (02) :224-230
[3]   Thiamin biosynthesis in prokaryotes [J].
Begley, TP ;
Downs, DM ;
Ealick, SE ;
McLafferty, FW ;
Van Loon, APGM ;
Taylor, S ;
Campobasso, N ;
Chiu, HJ ;
Kinsland, C ;
Reddick, JJ ;
Xi, J .
ARCHIVES OF MICROBIOLOGY, 1999, 171 (05) :293-300
[4]   The 2.35 Å structure of the TenA homolog from Pyrococcus furiosus supports an enzymatic function in thiamine metabolism [J].
Benach, J ;
Edstrom, WC ;
Lee, I ;
Das, K ;
Cooper, B ;
Xiao, R ;
Liu, JF ;
Rost, B ;
Acton, TB ;
Montelione, GT ;
Hunt, JF .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2005, 61 :589-598
[5]   Bacterial gene regulation: from transcription attenuation to riboswitches and ribozymes [J].
Brantl, S .
TRENDS IN MICROBIOLOGY, 2004, 12 (11) :473-475
[6]  
Costello CA, 1996, J BIOL CHEM, V271, P3445, DOI 10.1074/jbc.271.7.3445
[7]  
ELNAGEH KM, 2001, INT J AGR BIOL, V3, P178
[8]  
GOODWIN TW, 1963, BIOSYNTHESIS VITAMIN
[9]   Rfam: annotating non-coding RNAs in complete genomes [J].
Griffiths-Jones, S ;
Moxon, S ;
Marshall, M ;
Khanna, A ;
Eddy, SR ;
Bateman, A .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D121-D124
[10]   Rfam: an RNA family database [J].
Griffiths-Jones, S ;
Bateman, A ;
Marshall, M ;
Khanna, A ;
Eddy, SR .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :439-441