Opposite roles of ERK and p38 mitogen-activated protein kinases in cadmium-induced genotoxicity and mitotic arrest

被引:66
作者
Chao, JI
Yang, JL [1 ]
机构
[1] Natl Tsing Hua Univ, Mol Carcinogenesis Lab, Dept Life Sci, Hsinchu 300, Taiwan
[2] Hsinchu Hosp, Med Technol Lab, Dept Hlth, Execut Yuan, Hsinchu, Taiwan
关键词
D O I
10.1021/tx010041o
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The roles of extracellular signal-regulated kinase (ERK) and p38 mitogen-activation protein kinase (MAPK) in guarding genome stability and regulating cell cycle progression were explored in CL3 human lung adenocarcinoma cells treated with cadmium (Cd), a human carcinogen. Exposing asynchronous cells to CdCl2 for 2 h (45% viability) caused irreversible mitotic arrest. Exposing early-G(2) cells to Cd markedly delayed mitotic exit and subsequently induced sub-G, populations; however, this did not alter the levels of Cdc2 and cyclin B1. These results suggest that Cd elicits mitotic arrest without affecting the progression of G(2) to mitosis. Using counterflow centrifugal elutriation and flow cytometry analysis, CL3 cells synchronized at G(1)-, S-, and G(2)/M-phases were collected and treated with CdCl2. G(2)/M was the most sensitive cell cycle phase to Cd for the induction of ERK and p38 MAPK activities, cytotoxicity, apoptosis, micronucleus, and intracellular peroxide; despite that similar Cd accumulation was observed in G(1)-, S-, and G(2)/M-cells. Co-treatment early-G(2) cells with Cd and SB202190, an inhibitor of p38 MAPK, significantly decreased the induction of micronucleus, mitotic arrest, and apoptosis. Conversely, PD98059, an inhibitor of the ERK upstream activators MKK1/2, enhanced micronucleus and apoptosis in Cd-treated early-G(2) cells. Together, the results suggest that intracellular peroxide may participate in the activation of ERK and p38 MAPK by Cd; also, the activated-p38 MAPK may contribute to mitotic arrest and genome instability, whereas the activated-ERK may help to maintain genome integrity and survival.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 69 条
[1]   Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation [J].
Abbott, DW ;
Holt, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (05) :2732-2742
[2]   MAPK inactivation is required for the G(2) to M-phase transition of the first mitotic cell cycle [J].
Abrieu, A ;
Fisher, D ;
Simon, MN ;
Doree, M ;
Picard, A .
EMBO JOURNAL, 1997, 16 (21) :6407-6413
[3]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[4]   USING THE MICRONUCLEUS ASSAY TO DETECT GENOTOXIC EFFECTS OF METAL-IONS [J].
BERCES, J ;
OTOS, M ;
SZIRMAI, S ;
CRANEURUENA, C ;
KOTELES, GJ .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1993, 101 :11-13
[5]   Activation of the p42 mitogen-activated protein kinase pathway inhibits Cdc2 activation and entry into M-phase in cycling Xenopus egg extracts [J].
Bitangcol, JC ;
Chau, ASS ;
Stadnick, E ;
Lohka, MJ ;
Dicken, B ;
Shibuya, EK .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (02) :451-467
[6]   Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry [J].
Brunet, A ;
Roux, D ;
Lenormand, P ;
Dowd, S ;
Keyse, S ;
Pouysségur, J .
EMBO JOURNAL, 1999, 18 (03) :664-674
[7]   ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2 [J].
Buckley, S ;
Driscoll, B ;
Barsky, L ;
Weinberg, K ;
Anderson, K ;
Warburton, D .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1999, 277 (01) :L159-L166
[8]   Complexity in the spindle checkpoint [J].
Burke, DJ .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (01) :26-31
[9]   Controlling the end of the cell cycle [J].
Cerutti, L ;
Simanis, V .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (01) :65-69
[10]   Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium [J].
Chuang, SM ;
Wang, IC ;
Yang, JL .
CARCINOGENESIS, 2000, 21 (07) :1423-1432