Finite volume methods on spheres and spherical centroidal Voronoi meshes

被引:34
作者
Du, Q [1 ]
Ju, LL
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
finite volume method; spherical Voronoi tessellations; spherical centroidal Voronoi tessellations; error estimates; convection-diffusion equations;
D O I
10.1137/S0036142903425410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper a finite volume approximation of linear convection-diffusion equations defined on a sphere using the spherical Voronoi meshes, in particular the spherical centroidal Voronoi meshes. The high quality of spherical centroidal Voronoi meshes is illustrated through both theoretical analysis and computational experiments. In particular, we show that the L-2 error of the approximate solution is of quadratic order when the underlying mesh is given by a spherical centroidal Voronoi mesh. We also demonstrate numerically the high accuracy and the superconvergence of the approximate solutions.
引用
收藏
页码:1673 / 1692
页数:20
相关论文
共 37 条
[1]  
[Anonymous], SOBOLEV SPACES RIEMA
[2]   CO-VOLUME METHODS FOR DEGENERATE PARABOLIC PROBLEMS [J].
BAUGHMAN, LA ;
WALKINGTON, NJ .
NUMERISCHE MATHEMATIK, 1993, 64 (01) :45-67
[3]   ICOSAHEDRAL DISCRETIZATION OF THE 2-SPHERE [J].
BAUMGARDNER, JR ;
FREDERICKSON, PO .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1107-1115
[4]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[5]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[6]   Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations [J].
Coudière, Y ;
Gallouët, T ;
Herbin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :767-778
[7]  
Du Q, 2005, MATH COMPUT, V74, P1257, DOI 10.1090/S0025-5718-04-01719-3
[8]   Numerical simulations of the quantized vortices on a thin superconducting hollow sphere [J].
Du, Q ;
Ju, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (02) :511-530
[9]   Analysis and convergence of a covolume approximation of the Ginzburg-Landau model of superconductivity [J].
Du, Q ;
Nicolaides, RA ;
Wu, XN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :1049-1072
[10]   Convergence analysis of a numerical method for a mean field model of superconducting vortices [J].
Du, Q .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :911-926