Numerical simulations of the quantized vortices on a thin superconducting hollow sphere

被引:37
作者
Du, Q
Ju, L
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
quantized vortices; Ginzburg-Landau model of superconductivity; finite volume methods; spherical centroidal Voronoi tessellations;
D O I
10.1016/j.jcp.2004.06.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate the vortex nucleation on a thin superconducting hollow sphere. The problem is studied using a simplified system of Ginzburg-Landau equations. We present numerical algorithms which preserve the discrete gauge invariance for both time dependent and time independent simulations. The spatial discretization is based on a spherical centroidal Voronoi tessellation which offers a very effective high resolution mesh on the sphere for the order parameter as well as other physically interesting variables such as the super-current and the induced magnetic field. Various vortex configurations and energy diagrams are computed. Dynamic responses of the vortices to the applied current are also simulated. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 530
页数:20
相关论文
共 41 条
[1]   The bifurcation diagrams for the Ginzburg-Landau system of superconductivity [J].
Aftalion, A ;
Du, Q .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 163 (1-2) :94-105
[2]  
[Anonymous], SOBOLEV SPACES RIEMA
[3]   Dependence of the vortex configuration on the geometry of mesoscopic flat samples [J].
Baelus, BJ ;
Peeters, FM .
PHYSICAL REVIEW B, 2002, 65 (10) :1-12
[4]  
CHAPMAN S, 1995, ZAMP, V47, P410
[5]  
CHAPMAN S, 2004, GINZBURG LANDAU MODE
[6]  
Chapman SJ, 1998, SIAM J APPL MATH, V58, P1808
[7]   Adaptive galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity [J].
Chen, ZM ;
Dai, SB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 38 (06) :1961-1985
[8]  
Coffey MW, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214524
[9]   Hysteresis in mesoscopic superconducting disks: The Bean-Livingston barrier [J].
Deo, PS ;
Schweigert, VA ;
Peeters, FM .
PHYSICAL REVIEW B, 1999, 59 (09) :6039-6042
[10]   Critical magnetic field and asymptotic behavior of superconducting thin films [J].
Ding, SJ ;
Du, Q .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :239-256