Adaptive galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity

被引:48
作者
Chen, ZM [1 ]
Dai, SB [1 ]
机构
[1] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
关键词
a posteriori error estimates; Ginzburg Landau vortices; superconductivity; adaptive; nonlinear PDEs;
D O I
10.1137/S0036142998349102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-dependent Ginzburg-Landau model which describes the phase transitions taking place in superconductors is a coupled system of nonlinear parabolic equations. It is discretized semi-implicitly in time and in space via continuous piecewise linear finite elements. A posteriori error estimates are derived for the (LL2)-L-infinity norm by studying a dual problem of the linearization of the original system, other than the dual of error equations. Numerical simulations are included which illustrate the reliability of the estimators and the flexibility of the proposed adaptive method.
引用
收藏
页码:1961 / 1985
页数:25
相关论文
共 26 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[3]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[4]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[5]  
Chen Z., 1995, Adv Math Sci Appl, V5, P363
[6]   Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity [J].
Chen, ZM .
NUMERISCHE MATHEMATIK, 1997, 76 (03) :323-353
[7]   Optimal control of dynamical Ginzburg-Landau vortices in superconductivity [J].
Chen, ZM ;
Hoffmann, KH .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (3-4) :241-258
[8]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[9]   A characteristic Galerkin method with adaptive error control for the continuous casting problem [J].
Chen, ZM ;
Nochetto, RH ;
Schmidt, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 189 (01) :249-276
[10]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems