Critical magnetic field and asymptotic behavior of superconducting thin films

被引:16
作者
Ding, SJ [1 ]
Du, Q
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
superconductivity; thin films; vortices; pinning; critical magnetic field;
D O I
10.1137/S0036141000378619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. The discussion is based on a system of simplified Ginzburg-Landau equations. We obtain the estimate for the lower critical magnetic field H-c1, in the sense that it is the first critical value of h(ex), the applied field, for which the minimal energy among vortexless configurations is equal to the minimal energy among single-vortex configurations; moreover, it corresponds to the first phase transition in which vortices appear in the superconductor. We also discuss the location of these vortices and the asymptotic behavior of the local minimizers.
引用
收藏
页码:239 / 256
页数:18
相关论文
共 26 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]   Pinning phenomena in the Ginzburg-Landau model of superconductivity [J].
Aftalion, A ;
Sandier, E ;
Serfaty, S .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03) :339-372
[3]   Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part II [J].
André N. ;
Shafrir I. .
Archive for Rational Mechanics and Analysis, 1998, 142 (1) :75-98
[4]   Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part I [J].
Andre, N ;
Shafrir, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (01) :45-73
[5]  
ANDRE N, MATH ANAL GINZBURGLA
[6]   Stable nucleation for the Ginzburg-Landau system with an applied magnetic field [J].
Bauman, P ;
Phillips, D ;
Tang, Q .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (01) :1-43
[7]   TILING FIGURES OF THE PLANE WITH 2 BARS [J].
BEAUQUIER, D ;
NIVAT, M ;
REMILA, E ;
ROBSON, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (01) :1-25
[8]  
BETHUEL F, 1995, ANN I H POINCARE-AN, V12, P243
[9]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[10]  
BETHUEL F, 1994, GINZBURGLANDAU VORTI