Numerical simulations of the quantized vortices on a thin superconducting hollow sphere

被引:37
作者
Du, Q
Ju, L
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
quantized vortices; Ginzburg-Landau model of superconductivity; finite volume methods; spherical centroidal Voronoi tessellations;
D O I
10.1016/j.jcp.2004.06.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate the vortex nucleation on a thin superconducting hollow sphere. The problem is studied using a simplified system of Ginzburg-Landau equations. We present numerical algorithms which preserve the discrete gauge invariance for both time dependent and time independent simulations. The spatial discretization is based on a spherical centroidal Voronoi tessellation which offers a very effective high resolution mesh on the sphere for the order parameter as well as other physically interesting variables such as the super-current and the induced magnetic field. Various vortex configurations and energy diagrams are computed. Dynamic responses of the vortices to the applied current are also simulated. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 530
页数:20
相关论文
共 41 条
[11]   Vortices in a thin-film superconductor with a spherical geometry [J].
Dodgson, MJW ;
Moore, MA .
PHYSICAL REVIEW B, 1997, 55 (06) :3816-3831
[12]  
Donnelly R. J., 1991, QUANTIZED VORTICES H, V2
[13]   High-kappa limits of the time-dependent Ginzburg-Landau model [J].
Du, Q ;
Gray, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (04) :1060-1093
[14]  
Du Q, 2003, CONTEMP MATH, V329, P105
[15]   COMPUTATIONAL SIMULATION OF TYPE-II SUPERCONDUCTIVITY INCLUDING PINNING PHENOMENA [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
PHYSICAL REVIEW B, 1995, 51 (22) :16194-16203
[16]   Analysis and convergence of a covolume approximation of the Ginzburg-Landau model of superconductivity [J].
Du, Q ;
Nicolaides, RA ;
Wu, XN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :1049-1072
[17]   Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity [J].
Du, Q .
MATHEMATICS OF COMPUTATION, 1998, 67 (223) :965-986
[18]   Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere [J].
Du, Q ;
Gunzburger, MD ;
Ju, LL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (35-36) :3933-3957
[19]   Constrained centroidal Voronoi tessellations for surfaces [J].
Du, Q ;
Gunzburger, MD ;
Ju, LL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05) :1488-1506
[20]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81