Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity

被引:31
作者
Du, Q
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Ginzburg-Landau model of superconductivity; time dependent equations; nonstandard difference approximations; gauge invariance; convergence; error estimates;
D O I
10.1090/S0025-5718-98-00954-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present here a mathematical analysis of a nonstandard difference method for the numerical solution of the time dependent Ginzburg-Landau models of superconductivity. This type of method has been widely used in numerical simulations of the behavior of superconducting materials. We also illustrate some of their nice propel-ties such as the gauge invariance being retained in discrete approximations and the discrete order parameter having physically consistent pointwise bound.
引用
收藏
页码:965 / 986
页数:22
相关论文
共 25 条
[1]   RELAXATION METHODS FOR GAUGE FIELD EQUILIBRIUM EQUATIONS [J].
ADLER, SL ;
PIRAN, T .
REVIEWS OF MODERN PHYSICS, 1984, 56 (01) :1-40
[2]  
Chen Z., 1995, Adv Math Sci Appl, V5, P363
[3]   Time-dependent Ginzburg-Landau simulations of vortex guidance by twin boundaries [J].
Crabtree, GW ;
Leaf, GK ;
Kaper, HG ;
Vinokur, VM ;
Koshelev, AE ;
Braun, DW ;
Levine, DM ;
Kwok, WK ;
Fendrich, JA .
PHYSICA C, 1996, 263 (1-4) :401-408
[4]   SOLVING THE GINZBURG-LANDAU EQUATIONS BY SIMULATED ANNEALING [J].
DORIA, MM ;
GUBERNATIS, JE ;
RAINER, D .
PHYSICAL REVIEW B, 1990, 41 (10) :6335-6340
[5]   SOLVING THE GINZBURG-LANDAU EQUATIONS BY FINITE-ELEMENT METHODS [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
PHYSICAL REVIEW B, 1992, 46 (14) :9027-9034
[6]   FINITE-ELEMENT APPROXIMATION OF A PERIODIC GINZBURG-LANDAU MODEL FOR TYPE-II SUPERCONDUCTORS [J].
DU, Q ;
GUNZBURGER, M ;
PETERSON, J .
NUMERISCHE MATHEMATIK, 1993, 64 (01) :85-114
[7]   COMPUTATIONAL SIMULATION OF TYPE-II SUPERCONDUCTIVITY INCLUDING PINNING PHENOMENA [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
PHYSICAL REVIEW B, 1995, 51 (22) :16194-16203
[8]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[9]   FINITE-ELEMENT METHODS FOR THE TIME-DEPENDENT GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (12) :119-133
[10]  
DU Q, 1997, IN PRESS SIAM NUMER