Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: Accelerated molecular dynamics analysis

被引:83
作者
Hamelberg, D [1 ]
Shen, T
McCammon, JA
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, Ctr Theoret Biol Phys, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
D O I
10.1021/ja0446707
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The presence of serine/threonine-proline motifs in proteins provides a conformational switching mechanism of the backbone through the cis/trans isomerization of the peptidyl-prolyl (omega) bond. The reversible phosphorylation of the serine/threonine modulates this switching in regulatory proteins to alter signaling and transcription. However, the mechanism is not well understood. This is partly because cis/trans isomerization is a very slow process and, hence, difficult to study. We have used our accelerated molecular dynamics method to study the cis/trans proline isomerization, preferred backbone conformation of a serine-proline motif, and the effects of phosphorylation of the serine residue. We demonstrate that, unlike normal molecular dynamics, the accelerated molecular dynamics allows for the system to escape very easily from the trans isomer to cis isomer, and vice versa. Moreover, for both the unphosphorylated and phosphorylated peptides, the statistical thermodynamic properties are recaptured, and the results are consistent with experimental values. lsomerization of the proline omega bond is shown to be asymmetric and strongly dependent on the psi backbone angle before and after phosphorylation. The rates of escape decrease after phosphorylation. Also, the alpha-helical backbone conformation is more favored after phosphorylation. This accelerated molecular dynamics approach provides a general approach for enhancing the conformational transitions of molecular systems without having prior knowledge of the location of the minima and barriers on the potential-energy landscape.
引用
收藏
页码:1969 / 1974
页数:6
相关论文
共 38 条
[1]   Novel methods of sampling phase space in the simulation of biological systems [J].
Berne, BJ ;
Straub, JE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (02) :181-189
[2]   Multicanonical methods, molecular dynamics, and Monte Carlo methods: Comparison for Lennard-Jones glasses [J].
Bhattacharya, KK ;
Sethna, JP .
PHYSICAL REVIEW E, 1998, 57 (03) :2553-2562
[3]   CONFORMATIONAL SAMPLING USING HIGH-TEMPERATURE MOLECULAR-DYNAMICS [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1990, 29 (14) :1847-1862
[4]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[5]   ENHANCED SAMPLING IN MOLECULAR-DYNAMICS - USE OF THE TIME-DEPENDENT HARTREE APPROXIMATION FOR A SIMULATION OF CARBON-MONOXIDE DIFFUSION THROUGH MYOGLOBIN [J].
ELBER, R ;
KARPLUS, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (25) :9161-9175
[6]   CIS-TRANS IMIDE ISOMERIZATION OF THE PROLINE DIPEPTIDE [J].
FISCHER, S ;
DUNBRACK, RL ;
KARPLUS, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (26) :11931-11937
[7]   THE ENERGY LANDSCAPES AND MOTIONS OF PROTEINS [J].
FRAUENFELDER, H ;
SLIGAR, SG ;
WOLYNES, PG .
SCIENCE, 1991, 254 (5038) :1598-1603
[8]   Hyper molecular dynamics with a local bias potential [J].
Gong, XG ;
Wilkins, JW .
PHYSICAL REVIEW B, 1999, 59 (01) :54-57
[9]   PREDICTING SLOW STRUCTURAL TRANSITIONS IN MACROMOLECULAR SYSTEMS - CONFORMATIONAL FLOODING [J].
GRUBMULLER, H .
PHYSICAL REVIEW E, 1995, 52 (03) :2893-2906
[10]   Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules [J].
Hamelberg, D ;
Mongan, J ;
McCammon, JA .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (24) :11919-11929