Distribution of eigenvalues for the modular group

被引:21
作者
Bogomolny, E [1 ]
Leyvraz, F [1 ]
Schmit, C [1 ]
机构
[1] LD LANDAU THEORET PHYS INST, CHERNOGOLOVKA 142432, RUSSIA
关键词
D O I
10.1007/BF02099251
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-point correlation functions of energy levels for free motion on the modular domain, both with periodic and Dirichlet boundary conditions, are explicitly computed using a generalization of the Hardy-Littlewood method. It is shown that in the limit of small separations they show an uncorrelated behaviour and agree with the Poisson distribution but they have prominent number-theoretical oscillations at larger scale. The results agree well with numerical simulations.
引用
收藏
页码:577 / 617
页数:41
相关论文
共 43 条
[21]   Some problems of 'partitio numerorum', III On the expression of a number as a sum of primes [J].
Hardy, GH ;
Littlewood, JE .
ACTA MATHEMATICA, 1923, 44 (01) :1-70
[22]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[23]  
HEJHAL D, 1979, LECT NOTES MATH, V1, P548
[24]  
Hejhal D.A., 1983, The Selberg trace formula for PSL(2,R), V2, P1001
[25]  
Hopf E., 1937, Ergodentheorie
[26]   ZUR ANALYTISCHEN THEORIE HYPERBOLISCHER RAUMFORMEN UND BEWEGUNGSGRUPPEN [J].
HUBER, H .
MATHEMATISCHE ANNALEN, 1959, 138 (01) :1-26
[27]  
Karamata J, 1931, J REINE ANGEW MATH, V164, P27
[28]  
KATOK S, 1992, CHICAGO LECTURE MATH
[29]  
Kloosterman H.D., 1926, Acta mathematica, V49, P407
[30]  
KUSNETSOV NV, 1985, J SOVIET MATH, V29, P1131