Presmoothed kernel density estimator for censored data

被引:22
作者
Cao, R
Jácome, MA
机构
[1] Univ Vigo, Dept Estadist & Invest Operat, Orense 32004, Spain
[2] Univ A Coruna, Dept Matemat, La Coruna 15071, Spain
关键词
bandwidth selection; Kaplan-Meier estimator; mean integrated squared error; nonparametric density estimator; survival analysis;
D O I
10.1080/10485250310001622622
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Some kernel density estimator is presented in the context of right randomly censored data. The estimator makes use of presmoothing ideas replacing the indicators of no censoring by some preliminary nonparametric estimator of the conditional probability of uncensoring. Some i.i.d representation is given for this presmoothing estimator. This is useful to obtain the limit distribution and the asymptotic mean squared error of the estimator. An asymptotic mean integrated squared error result is also presented and used to derive large-sample formulas for the optimal presmoothing and the smoothing parameters. Finally, some simulations illustrate the theory.
引用
收藏
页码:289 / 309
页数:21
相关论文
共 20 条
[11]   CRAMER VON MISES STATISTIC FOR RANDOMLY CENSORED DATA [J].
KOZIOL, JA ;
GREEN, SB .
BIOMETRIKA, 1976, 63 (03) :465-474
[12]   THE PRODUCT-LIMIT ESTIMATOR AND THE BOOTSTRAP - SOME ASYMPTOTIC REPRESENTATIONS [J].
LO, SH ;
SINGH, K .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (03) :455-465
[13]   DENSITY AND HAZARD RATE ESTIMATION FOR CENSORED-DATA VIA STRONG REPRESENTATION OF THE KAPLAN-MEIER ESTIMATOR [J].
LO, SH ;
MACK, YP ;
WANG, JL .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 80 (03) :461-473
[14]   WEAK AND STRONG UNIFORM CONSISTENCY OF KERNEL REGRESSION ESTIMATES [J].
MACK, YP ;
SILVERMAN, BW .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (03) :405-415
[15]   ASYMPTOTICALLY OPTIMAL BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATORS FROM RANDOMLY RIGHT-CENSORED SAMPLES [J].
MARRON, JS ;
PADGETT, WJ .
ANNALS OF STATISTICS, 1987, 15 (04) :1520-1535
[16]   SOME ASYMPTOTIC PROPERTIES OF KERNEL ESTIMATORS OF A DENSITY-FUNCTION IN CASE OF CENSORED-DATA [J].
MIELNICZUK, J .
ANNALS OF STATISTICS, 1986, 14 (02) :766-773
[17]  
Nadaraja E.A., 1964, Teor. Verojatnost. i Primen, V9, P157
[18]  
Watson G.S., 1964, SANKHYA A, V26, P359, DOI DOI 10.2307/25049340
[19]  
ZHANG B, 1999, FAR E J THEOR STAT, V3, P171
[20]  
ZIEGLER S, 1995, MODIFIZIERTER KAPLAN