Determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: How reliable are absolute configurations obtained for molecules with small rotations?

被引:204
作者
Stephens, PJ [1 ]
Mccann, DM
Cheeseman, JR
Frisch, MJ
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Gaussian Inc, Wallingford, CT USA
关键词
absolute configuration; Density Functional Theory; optical rotation;
D O I
10.1002/chir.20109
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The absolute configuration (AC) of a chiral molecule can be determined via calculation of its specific rotation. Currently, the latter is most accurately carried out using the TDDFT/GIAO methodology. Here we examine the reliability of this methodology in determining ACs of molecules with small specific rotations. We report TDDFT/GIAO B3LYP/aug-cc-pVDZ//B3LYP/6-31G* calculations of the sodium D line specific rotations, [alpha](D), of 65 conformationally rigid chiral molecules whose experimental [alpha](D) values are small (< 100). The RMS deviations, sigma, of calculated and experimental [alpha](D) values is 28.9. The distribution of deviations is approximately Gaussian, i.e., random. For eight molecules, more than 10% of the set, the sign of the predicted [alpha](D) is incorrect. In determining an AC of a rigid molecule from [alpha](D) with 95% confidence, the calculated [alpha](D) value must lie within +/- 2 sigma of the experimental [alpha](D) for one, but not both, of the possible ACs. For the 65 molecules of this study +/- 2 sigma is 57.8. For conformationally flexible molecules, the error bar is +/-> 57.8. Chirality 17:S52-S64, 2005. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:S52 / S64
页数:13
相关论文
共 61 条
[21]   Chiral action at a distance: Remote substituent effects on the optical activity of calyculins A and B [J].
Kondru, RK ;
Beratan, DN ;
Friestad, GK ;
Smith, AB ;
Wipf, P .
ORGANIC LETTERS, 2000, 2 (11) :1509-1512
[22]   The absolute configuration of (+)-oxopropaline D by theoretical calculation of specific rotation and asymmetric synthesis [J].
Kuwada, T ;
Fukui, M ;
Hata, T ;
Choshi, T ;
Nobuhiro, J ;
Ono, Y ;
Hibino, S .
CHEMICAL & PHARMACEUTICAL BULLETIN, 2003, 51 (01) :20-23
[23]   On the resolution of the optical rotatory power of chiral molecules into atomic terms. A study of hydrogen peroxide [J].
Ligabue, A ;
Lazzeretti, P ;
Varela, MPB ;
Ferraro, MB .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15) :6427-6434
[24]   Determination of absolute configuration using density functional theory calculation of optical rotation: Chiral Alkanes [J].
McCann, DM ;
Stephens, PJ ;
Cheeseman, JR .
JOURNAL OF ORGANIC CHEMISTRY, 2004, 69 (25) :8709-8717
[25]  
MCCANN DM, UNPUB DETERMINATION
[26]   Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules [J].
Mennucci, B ;
Tomasi, J ;
Cammi, R ;
Cheeseman, JR ;
Frisch, MJ ;
Devlin, FJ ;
Gabriel, S ;
Stephens, PJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (25) :6102-6113
[27]  
NEHIRA T, 2001, KAGAKU TO SEIBUTSU, V39, P426
[28]   Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions [J].
Norman, P ;
Ruud, K ;
Helgaker, T .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (11) :5027-5035
[29]   Origin invariant calculation of optical rotation without recourse to London orbitals [J].
Pedersen, TB ;
Koch, H ;
Boman, L ;
de Merás, AMJS .
CHEMICAL PHYSICS LETTERS, 2004, 393 (4-6) :319-326
[30]   Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions [J].
Pedersen, TB ;
de Merás, AMJS ;
Koch, H .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (19) :8887-8897