Asymptotic error analysis of the Adaptive Verlet method

被引:12
作者
Cirilli, S
Hairer, E
Leimkuhler, B
机构
[1] Univ Geneva, Sect Math, CH-1211 Geneva 24, Switzerland
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Adaptive Verlet method; time-reversible variable stepsizes; Hamiltonian systems; Sundman time-transformations; backward error analysis; asymptotic expansions;
D O I
10.1023/A:1022313123291
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Adaptive Verlet method and variants are time-reversible schemes for treating Hamiltonian systems subject to a Sundman time transformation. These methods have been observed in computer experiments to exhibit superior numerical stability when implemented in a counterintuitive "reciprocal" formulation. Here we give a theoretical explanation of this behavior by examining the leading terms of the modified equation (backward error analysis) and those of the asymptotic error expansion. With this insight we are able to improve the algorithm by simply correcting the starting stepsize. AMS subject classification: 65L06, 65L20.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 10 条
[1]  
CALVO MP, IN PRESS APPL NUMER
[2]  
CORLISS GF, 1991, AUTOMATIC DIFFERENTI
[3]   Variable time step integration with symplectic methods [J].
Hairer, E .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :219-227
[4]  
Hairer E., 1996, Springer Series in Computational Mathematics, V14, DOI DOI 10.1007/978-3-642-05221-7
[5]  
Hairer E., 1993, SPRINGER SERIES COMP, V8, DOI 10.1007/978-3-540-78862-1
[6]  
HOLDER T, 1998, UNPUB EXPLICIT VARIA
[7]   The adaptive Verlet method [J].
Huang, WZ ;
Leimkuhler, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :239-256
[8]  
LEIMKUHLER B, 1997, 1997NA08 DAMTP U CAM
[9]  
REICH S, IN PRESS SIAM J NUME
[10]   VARIABLE STEPS FOR REVERSIBLE INTEGRATION METHODS [J].
STOFFER, D .
COMPUTING, 1995, 55 (01) :1-22