Direct strain estimation in elastography using spectral cross-correlation

被引:93
作者
Varghese, T
Konofagou, EE
Ophir, J
Alam, SK
Bilgen, M
机构
[1] Univ Texas, Sch Med, Dept Radiol, Ultrason Lab, Houston, TX 77030 USA
[2] Univ Texas, Sch Med, Dept Radiol, MRI Lab, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
centroid; cross-correlation; elastography; elastogram; imaging; strain; spectral shift; strain filter; ultrasound;
D O I
10.1016/S0301-5629(00)00316-1
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Spectral estimation of tissue strain has been performed previously by using the centroid shift of the power spectrum or by estimating the variation in the mean scatterer spacing in the spectral domain. The centroid shift method illustrates the robustness of the direct, incoherent strain estimator. In this paper, we present a strain estimator that uses spectral cross-correlation of the pre- and postcompression power spectrum. The centroid shift estimator estimates strain from the mean center frequency shift, while the spectral cross-correlation estimates the shift over the entire spectrum, Spectral cross-correlation is shown to be more sensitive to small shifts in the power spectrum and, thus, provides better estimation for smaller strains when compared to the spectral centroid shift. Spectral cross-correlation shares all the advantages gained using the spectral centroid shift, in addition to providing accurate and precise strain estimation for small strains. The variance and noise properties of the spectral strain estimators quantified by their respective strain filters are also presented. (C) 2001 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:1525 / 1537
页数:13
相关论文
共 35 条
[1]   An adaptive strain estimator for elastography [J].
Alam, SK ;
Ophir, J ;
Konofagou, EE .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1998, 45 (02) :461-472
[2]   Elastographic axial resolution criteria: An experimental study [J].
Alam, SK ;
Ophir, J ;
Varghese, T .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (01) :304-309
[3]   OPTIMAL CENTER-FREQUENCY ESTIMATION FOR BACKSCATTERED ULTRASOUND PULSES [J].
BAHR, RK ;
BUCKLEW, JA ;
FLAX, SW .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1985, 32 (06) :809-814
[4]  
BERTRAND M, 1989, IEEE 1989 ULTRASONICS SYMPOSIUM : PROCEEDINGS, VOLS 1 AND 2, P859, DOI 10.1109/ULTSYM.1989.67110
[5]   Deformation models and correlation analysis in elastography [J].
Bilgen, M ;
Insana, MF .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (05) :3212-3224
[6]  
Cespedes E. I., 1993, THESIS U HOUSTON
[7]   ULTRASONIC CHARACTERIZATION OF TISSUE STRUCTURE IN THE INVIVO HUMAN-LIVER AND SPLEEN [J].
FELLINGHAM, LL ;
SOMMER, FG .
IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1984, 31 (04) :418-428
[8]   Phantom materials for elastography [J].
Hall, TJ ;
Bilgen, M ;
Insana, MF ;
Krouskop, TA .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1997, 44 (06) :1355-1365
[9]   DESCRIBING SMALL-SCALE STRUCTURE IN RANDOM-MEDIA USING PULSE-ECHO ULTRASOUND [J].
INSANA, MF ;
WAGNER, RF ;
BROWN, DG ;
HALL, TJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 87 (01) :179-192
[10]  
Kay S., 1996, FUNDAMENTALS STAT SI