Integration of light-controlled neuronal firing and fast circuit imaging

被引:29
作者
Airan, Raag D. [1 ]
Hu, Elbert S. [1 ]
Vijaykumar, Ragu [1 ]
Roy, Madhuri [1 ]
Meltzer, Leslie A. [1 ]
Deisseroth, Karl [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.conb.2007.11.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
For understanding normal and pathological circuit function, capitalizing on the full potential of recent advances in fast optical neural circuit control will depend crucially on fast, intact-circuit readout technology. First, millisecond-scale optical control will be best leveraged with simultaneous millisecond-scale optical imaging. Second, both fast circuit control and imaging should be adaptable to intact-circuit preparations from normal and diseased subjects. Here we illustrate integration of fast optical circuit control and fast circuit imaging, review recent work demonstrating utility of applying fast imaging to quantifying activity flow in disease models, and discuss integration of diverse optogenetic and chemical genetic tools that have been developed to precisely control the activity of genetically specified neural populations. Together these neuroengineering advances raise the exciting prospect of determining the role-specific cell types play in modulating neural activity flow in neuropsychiatric disease.
引用
收藏
页码:587 / 592
页数:6
相关论文
共 32 条
  • [1] Neural substrates of awakening probed with optogenetic control of hypocretin neurons
    Adamantidis, Antoine R.
    Zhang, Feng
    Aravanis, Alexander M.
    Deisseroth, Karl
    De Lecea, Luis
    [J]. NATURE, 2007, 450 (7168) : 420 - U9
  • [2] High-speed Imaging reveals neurophysiological links to behavior in an animal model of depression
    Airan, Raag D.
    Meltzer, Leslie A.
    Roy, Madhuri
    Gong, Yuqing
    Chen, Han
    Deisseroth, Karl
    [J]. SCIENCE, 2007, 317 (5839) : 819 - 823
  • [3] Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies
    Ang, CW
    Carlson, GC
    Coulter, DA
    [J]. JOURNAL OF NEUROSCIENCE, 2005, 25 (42) : 9567 - 9580
  • [4] An optical neural interface:: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
    Aravanis, Alexander M.
    Wang, Li-Ping
    Zhang, Feng
    Meltzer, Leslie A.
    Mogri, Murtaza Z.
    Schneider, M. Bret
    Deisseroth, Karl
    [J]. JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) : S143 - S156
  • [5] In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2
    Arenkiel, Benjamin R.
    Peca, Joao
    Davison, Ian G.
    Feliciano, Catia
    Deisseroth, Karl
    Augustine, George J.
    Ehlers, Michael D.
    Feng, Guoping
    [J]. NEURON, 2007, 54 (02) : 205 - 218
  • [6] Deep brain stimulation for Parkinson's disease
    Benabid, AL
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2003, 13 (06) : 696 - 706
  • [7] Cellular principles underlying normal and pathological activity in the subthalamic nucleus
    Bevan, Mark D.
    Atherton, Jeremy F.
    Baufreton, Jerome
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2006, 16 (06) : 621 - 628
  • [8] Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test
    Cryan, JF
    Valentino, RJ
    Lucki, I
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2005, 29 (4-5) : 547 - 569
  • [9] In vivo calcium imaging from genetically specified target cells in mouse cerebellum
    Diez-Garcia, Javier
    Akemann, Walther
    Knopfel, Thomas
    [J]. NEUROIMAGE, 2007, 34 (03) : 859 - 869
  • [10] Fiber-optic fluorescence imaging
    Flusberg, BA
    Cocker, ED
    Piyawattanametha, W
    Jung, JC
    Cheung, ELM
    Schnitzer, MJ
    [J]. NATURE METHODS, 2005, 2 (12) : 941 - 950