Line transversals of balls and smallest enclosing cylinders in three dimensions

被引:41
作者
Agarwal, PK
Aronov, B
Sharir, M
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/PL00009427
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We establish a near-cubic upper bound on the complexity of the space of line transversals of a collection of n balls in three dimensions, and show that the bound is almost tight, in the worst case. We apply this bound to obtain a near-cubic algorithm for computing a smallest infinite cylinder enclosing a given set of points or balls in 3-space. We also present an approximation algorithm for computing a Smallest enclosing cylinder.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 29 条
[1]   The overlay of lower envelopes and its applications [J].
Agarwal, PK ;
Schwarzkopf, O ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) :1-13
[2]   Computing envelopes in four dimensions with applications [J].
Agarwal, PK ;
Aronov, B ;
Sharir, M .
SIAM JOURNAL ON COMPUTING, 1997, 26 (06) :1714-1732
[3]   ON STABBING LINES FOR CONVEX POLYHEDRA IN 3D [J].
AGARWAL, PK .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (04) :177-189
[4]   APPLICATIONS OF PARAMETRIC SEARCHING IN GEOMETRIC OPTIMIZATION [J].
AGARWAL, PK ;
SHARIR, M ;
TOLEDO, S .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :292-318
[5]   HELLY-TYPE THEOREMS AND GENERALIZED LINEAR-PROGRAMMING [J].
AMENTA, N .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (03) :241-261
[6]   LOWER BOUNDS FOR LINE STABBING [J].
AVIS, D ;
ROBERT, JM ;
WENGER, R .
INFORMATION PROCESSING LETTERS, 1989, 33 (02) :59-62
[7]   POLYHEDRAL LINE TRANSVERSALS IN SPACE [J].
AVIS, D ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) :257-265
[8]  
Babu U., 1993, P ANN M ASPE
[9]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[10]  
FORBES AB, 1993, NUMER ALGORITHMS, V5, P523